Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yyc完成签到,获得积分10
1秒前
1秒前
Syu完成签到,获得积分20
1秒前
1秒前
wanghanhan完成签到,获得积分10
1秒前
小牛发布了新的文献求助10
2秒前
爆米花应助长至采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
自由蓝发布了新的文献求助10
2秒前
3秒前
墨小菊发布了新的文献求助10
3秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
spc68应助科研通管家采纳,获得10
4秒前
spc68应助科研通管家采纳,获得10
4秒前
jiben发布了新的文献求助10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
6777777L发布了新的文献求助10
4秒前
暴躁火龙果完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
欢呼的白玉完成签到 ,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
liao应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
baldman完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
spc68应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
yyc发布了新的文献求助10
6秒前
000发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972