Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
djdj发布了新的文献求助10
1秒前
个性的抽象完成签到 ,获得积分10
2秒前
gulugulugulug发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
bkagyin应助简单的夜绿采纳,获得10
3秒前
4秒前
4秒前
领导范儿应助爱听歌代芙采纳,获得10
5秒前
5秒前
ayang001完成签到,获得积分10
5秒前
ou发布了新的文献求助10
6秒前
6秒前
8秒前
Wind发布了新的文献求助50
8秒前
苏苏发布了新的文献求助10
9秒前
香蕉觅云应助雷雷采纳,获得10
9秒前
啦啦啦完成签到,获得积分10
9秒前
DiJia完成签到 ,获得积分10
10秒前
冰棍鸡杂完成签到,获得积分10
10秒前
共享精神应助刘岩松采纳,获得10
10秒前
Clarissa完成签到,获得积分10
10秒前
池鱼发布了新的文献求助10
11秒前
11秒前
ts完成签到,获得积分10
12秒前
小二郎应助刚刚好采纳,获得10
12秒前
NexusExplorer应助刚刚好采纳,获得10
12秒前
李梦婷发布了新的文献求助10
12秒前
12秒前
酷炫的之柔完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
小凡完成签到,获得积分20
14秒前
bkagyin应助TingtingGZ采纳,获得10
14秒前
asdfzxcv应助月星采纳,获得10
14秒前
科研通AI6应助积极的珩采纳,获得10
16秒前
田様应助djdj采纳,获得10
17秒前
吕yj发布了新的文献求助10
17秒前
17秒前
小凡发布了新的文献求助10
17秒前
田様应助乐观的鞋垫采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666691
求助须知:如何正确求助?哪些是违规求助? 4882812
关于积分的说明 15117878
捐赠科研通 4825664
什么是DOI,文献DOI怎么找? 2583534
邀请新用户注册赠送积分活动 1537723
关于科研通互助平台的介绍 1495910