亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无尘完成签到 ,获得积分10
1秒前
5秒前
海鸥别叫了完成签到 ,获得积分10
7秒前
菜菜蔡儿完成签到 ,获得积分10
9秒前
撕佳发布了新的文献求助10
9秒前
10秒前
LALA发布了新的文献求助10
16秒前
16秒前
小y要读书完成签到,获得积分10
18秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
Tanya47应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
长情谷南发布了新的文献求助10
20秒前
Criminology34举报Einsamerxx求助涉嫌违规
20秒前
24秒前
潇淼完成签到 ,获得积分10
26秒前
习惯过了头完成签到 ,获得积分10
27秒前
简柠完成签到,获得积分10
27秒前
fangdonghai发布了新的文献求助10
28秒前
Sc完成签到 ,获得积分10
32秒前
wwdd完成签到,获得积分10
32秒前
Hello应助嘎哈采纳,获得10
33秒前
缥缈夏彤完成签到,获得积分10
40秒前
烂漫凡双发布了新的文献求助30
40秒前
Dliii完成签到 ,获得积分10
41秒前
42秒前
年年有余完成签到,获得积分10
44秒前
张天泽完成签到,获得积分10
45秒前
47秒前
47秒前
LALA完成签到,获得积分10
52秒前
无题完成签到,获得积分10
54秒前
1分钟前
jinsijia发布了新的文献求助10
1分钟前
丘比特应助fangdonghai采纳,获得10
1分钟前
1分钟前
1分钟前
尚秋月完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881