Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:59
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱小懒虫完成签到 ,获得积分10
刚刚
刚刚
刚刚
云云发布了新的文献求助10
刚刚
高高发布了新的文献求助10
刚刚
1秒前
Ava应助fz采纳,获得10
1秒前
黎书禾发布了新的文献求助10
2秒前
乐观的星月完成签到 ,获得积分10
3秒前
哈哈发布了新的文献求助10
3秒前
4秒前
英姑应助陈小白采纳,获得10
4秒前
送外卖了发布了新的文献求助10
4秒前
司空豁应助Jesenia采纳,获得10
4秒前
pumpkin发布了新的文献求助10
4秒前
5秒前
俭朴千万完成签到,获得积分20
5秒前
超级寒凝发布了新的文献求助10
5秒前
有点意思完成签到,获得积分10
5秒前
温暖的蚂蚁完成签到 ,获得积分10
6秒前
zhang完成签到,获得积分10
6秒前
Southluuu发布了新的文献求助10
7秒前
小陈完成签到,获得积分10
7秒前
9秒前
SciGPT应助有点意思采纳,获得10
9秒前
Akim应助summer采纳,获得10
11秒前
12秒前
hugh完成签到,获得积分10
13秒前
14秒前
Akim应助迅速的访云采纳,获得10
15秒前
少年旭完成签到,获得积分10
16秒前
16秒前
xieenxe发布了新的文献求助10
18秒前
丘比特应助超级寒凝采纳,获得10
18秒前
pumpkin完成签到,获得积分10
21秒前
叮当完成签到 ,获得积分10
21秒前
疗伤烧肉粽完成签到,获得积分10
22秒前
22秒前
谦让的初翠完成签到,获得积分10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292496
求助须知:如何正确求助?哪些是违规求助? 2928822
关于积分的说明 8438538
捐赠科研通 2600907
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642921