Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sf完成签到 ,获得积分10
1秒前
小西瓜发布了新的文献求助10
1秒前
樊迪完成签到,获得积分10
1秒前
1秒前
1秒前
zy发布了新的文献求助10
2秒前
CodeCraft应助优雅访曼采纳,获得10
2秒前
cauwindwill完成签到,获得积分10
2秒前
polite完成签到 ,获得积分10
2秒前
2秒前
回锅肉盖饭完成签到,获得积分10
2秒前
在水一方应助紧张的问薇采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
勤奋太君发布了新的文献求助10
3秒前
甜甜又亦完成签到,获得积分10
4秒前
4秒前
wzt完成签到,获得积分10
4秒前
烟花应助yangxt-iga采纳,获得10
5秒前
wentao发布了新的文献求助10
5秒前
ri_290完成签到,获得积分10
5秒前
hh完成签到,获得积分10
5秒前
5秒前
5秒前
李蕤蕤完成签到,获得积分10
5秒前
6秒前
SSSS完成签到,获得积分10
6秒前
HU完成签到,获得积分10
6秒前
6秒前
喜悦忆安完成签到,获得积分10
6秒前
6秒前
6秒前
2t发布了新的文献求助30
6秒前
黄紫红蓝发布了新的文献求助10
6秒前
稳重雁易完成签到 ,获得积分10
6秒前
7秒前
洛苏完成签到,获得积分10
8秒前
8秒前
Judson完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997