亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
纯真的柔发布了新的文献求助10
37秒前
科研通AI6应助纯真的柔采纳,获得10
42秒前
BowieHuang应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
BowieHuang应助科研通管家采纳,获得10
53秒前
BowieHuang应助阿里采纳,获得10
1分钟前
2分钟前
令狐凝阳发布了新的文献求助10
2分钟前
2分钟前
RC发布了新的文献求助10
2分钟前
CR7应助令狐凝阳采纳,获得20
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
李爱国应助npknpk采纳,获得10
2分钟前
3分钟前
3分钟前
ding应助陈文学采纳,获得10
3分钟前
3分钟前
4分钟前
无风风给无风风的求助进行了留言
4分钟前
npknpk发布了新的文献求助10
4分钟前
4分钟前
npknpk完成签到,获得积分10
4分钟前
隐形曼青应助长情洙采纳,获得10
4分钟前
FashionBoy应助科研通管家采纳,获得30
4分钟前
ccc完成签到 ,获得积分10
4分钟前
BowieHuang应助jing采纳,获得10
4分钟前
5分钟前
111完成签到 ,获得积分10
5分钟前
5分钟前
bubble完成签到 ,获得积分10
5分钟前
5分钟前
幽默白秋完成签到,获得积分10
6分钟前
wanci应助幽默白秋采纳,获得10
6分钟前
6分钟前
陈文学完成签到,获得积分10
6分钟前
陈文学发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590542
求助须知:如何正确求助?哪些是违规求助? 4674809
关于积分的说明 14795346
捐赠科研通 4633096
什么是DOI,文献DOI怎么找? 2532808
邀请新用户注册赠送积分活动 1501315
关于科研通互助平台的介绍 1468707