Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李hy发布了新的文献求助10
1秒前
研友_VZG7GZ应助刘霆勋采纳,获得10
1秒前
科研通AI6应助李俊杰采纳,获得30
2秒前
2秒前
秘密发布了新的文献求助10
2秒前
2秒前
2秒前
情怀应助好名字采纳,获得10
3秒前
3秒前
xiaolv应助能干可乐采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
gngxnh完成签到 ,获得积分10
4秒前
酷酷问薇发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
jm完成签到,获得积分10
5秒前
张紫嫣完成签到,获得积分10
5秒前
5秒前
怪诞奇男子完成签到,获得积分10
5秒前
6秒前
ss发布了新的文献求助10
6秒前
郑嘻嘻发布了新的文献求助10
6秒前
薄荷778发布了新的文献求助10
7秒前
7秒前
俏皮的老三完成签到 ,获得积分10
7秒前
9秒前
爆米花应助卢哲采纳,获得10
9秒前
sci大户发布了新的文献求助10
9秒前
Grace发布了新的文献求助10
9秒前
9秒前
科研通AI6应助虚心的丹珍采纳,获得10
9秒前
能干蜜蜂发布了新的文献求助10
10秒前
wanduzi完成签到,获得积分10
10秒前
10秒前
jm发布了新的文献求助10
10秒前
情怀应助123采纳,获得10
11秒前
北夏暖完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802