Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
2秒前
Jenny发布了新的文献求助10
3秒前
fzh发布了新的文献求助10
6秒前
6秒前
7秒前
10秒前
KYTYYDS发布了新的文献求助10
11秒前
HanluMa完成签到 ,获得积分10
11秒前
fzh完成签到,获得积分10
15秒前
Jenny完成签到,获得积分10
17秒前
伟立完成签到,获得积分10
17秒前
24秒前
25秒前
然12138完成签到 ,获得积分10
25秒前
香蕉觅云应助SnownS采纳,获得10
25秒前
川荣李奈完成签到 ,获得积分10
29秒前
xinbowey发布了新的文献求助10
29秒前
火星上向珊完成签到,获得积分10
32秒前
34秒前
柳条儿完成签到,获得积分10
34秒前
如意幻枫完成签到,获得积分10
38秒前
39秒前
39秒前
渔婆发布了新的文献求助10
40秒前
42秒前
风趣的泥猴桃完成签到 ,获得积分10
43秒前
43秒前
zgsjymysmyy发布了新的文献求助30
44秒前
fuchao完成签到,获得积分10
44秒前
牧谷发布了新的文献求助10
45秒前
好吃的火龙果完成签到 ,获得积分10
46秒前
天边发布了新的文献求助10
47秒前
东方越彬发布了新的文献求助10
48秒前
赘婿应助sunny采纳,获得10
48秒前
48秒前
48秒前
SnownS完成签到,获得积分10
49秒前
123123发布了新的文献求助10
53秒前
SnownS发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566