Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
goodgoodstudy发布了新的文献求助10
1秒前
林摆摆完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
海阔云高完成签到 ,获得积分10
3秒前
小马甲应助暖啾啾采纳,获得10
4秒前
强小强发布了新的文献求助10
5秒前
科研通AI6应助淡晴采纳,获得10
7秒前
7秒前
最初完成签到,获得积分10
7秒前
11mao11完成签到 ,获得积分10
7秒前
香蕉觅云应助今日采纳,获得10
8秒前
QW111完成签到,获得积分10
10秒前
谨慎的白秋完成签到,获得积分10
11秒前
李健应助hanjresearch采纳,获得10
11秒前
goodgoodstudy完成签到,获得积分10
11秒前
隐形曼青应助fy采纳,获得10
12秒前
13秒前
你看完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
今后应助不妖采纳,获得10
15秒前
15秒前
潇洒沛芹完成签到,获得积分10
16秒前
小二郎应助豆腐采纳,获得10
16秒前
黄大仙完成签到,获得积分10
16秒前
16秒前
Jasper应助Du采纳,获得10
17秒前
厚德载物完成签到 ,获得积分10
18秒前
经竺发布了新的文献求助10
20秒前
玄乙完成签到 ,获得积分10
21秒前
zhi完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
23秒前
24秒前
Owen应助康帅傅采纳,获得10
24秒前
量子星尘发布了新的文献求助20
24秒前
zhi发布了新的文献求助10
26秒前
fy发布了新的文献求助10
26秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5236872
求助须知:如何正确求助?哪些是违规求助? 4405022
关于积分的说明 13709120
捐赠科研通 4272996
什么是DOI,文献DOI怎么找? 2344751
邀请新用户注册赠送积分活动 1341947
关于科研通互助平台的介绍 1299669