Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿冲发布了新的文献求助10
刚刚
长的帅完成签到,获得积分10
刚刚
asyman完成签到,获得积分20
1秒前
汉堡包应助川上富江采纳,获得10
1秒前
2秒前
2秒前
2秒前
大国完成签到,获得积分10
2秒前
3秒前
假装有昵称完成签到 ,获得积分10
4秒前
李健应助狂野的幻翠采纳,获得10
4秒前
5秒前
蜗牛发布了新的文献求助10
5秒前
温婉的谷菱完成签到,获得积分10
5秒前
彭于晏应助七七采纳,获得10
5秒前
wsq完成签到,获得积分10
5秒前
May发布了新的文献求助10
5秒前
5秒前
今日不再蛇皇应助淡定语采纳,获得20
6秒前
asyman发布了新的文献求助10
6秒前
7秒前
美美完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
大国发布了新的文献求助10
9秒前
Buduan完成签到,获得积分10
9秒前
xiaoyaoyou351发布了新的文献求助10
9秒前
泡泡发布了新的文献求助10
9秒前
sunnyliu发布了新的文献求助10
9秒前
wkjfh应助ifly采纳,获得10
10秒前
sylar完成签到,获得积分10
11秒前
CipherSage应助asyman采纳,获得10
11秒前
浮游应助小C采纳,获得30
11秒前
小姜向阳开应助WeOne采纳,获得10
12秒前
12秒前
狂野的幻翠完成签到,获得积分10
12秒前
34101127发布了新的文献求助10
12秒前
13秒前
11发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653193
求助须知:如何正确求助?哪些是违规求助? 4789427
关于积分的说明 15063229
捐赠科研通 4811788
什么是DOI,文献DOI怎么找? 2574069
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488465