Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 卷积神经网络 模式识别(心理学) RGB颜色模型 联营 计算机视觉 深度学习 遥感 地理
作者
Ying Fu,Zhiyuan Liang,Shaodi You
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 2674-2688 被引量:67
标识
DOI:10.1109/jstars.2021.3057936
摘要

Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ttt发布了新的文献求助10
2秒前
善学以致用应助alive采纳,获得10
2秒前
xxxxx完成签到 ,获得积分10
3秒前
科研通AI6应助优美皮皮虾采纳,获得10
3秒前
4秒前
4秒前
超级棒棒糖完成签到 ,获得积分10
4秒前
JrPaleo101应助mumuwang采纳,获得30
6秒前
xiaoyi发布了新的文献求助10
6秒前
7秒前
xiaolin完成签到,获得积分10
7秒前
doudou完成签到 ,获得积分10
8秒前
8秒前
gdh发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
段段小无敌完成签到,获得积分10
9秒前
10秒前
pzh发布了新的文献求助300
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
斿斿发布了新的文献求助10
14秒前
此时留念发布了新的文献求助10
15秒前
orixero应助wtn采纳,获得10
16秒前
16秒前
18秒前
平安喜乐完成签到,获得积分10
19秒前
20秒前
梁成伟完成签到,获得积分20
21秒前
21秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
21秒前
别嚣张完成签到,获得积分10
22秒前
treelet007发布了新的文献求助10
22秒前
xxfsx应助温柔柜子采纳,获得10
22秒前
23秒前
wanci应助负责觅海采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430672
求助须知:如何正确求助?哪些是违规求助? 4543691
关于积分的说明 14188718
捐赠科研通 4462088
什么是DOI,文献DOI怎么找? 2446408
邀请新用户注册赠送积分活动 1437782
关于科研通互助平台的介绍 1414523