材料科学
原子层沉积
成核
钙钛矿(结构)
图层(电子)
光电子学
卤化物
纳米技术
双层
扩散阻挡层
聚乙烯亚胺
氧化物
金属
化学工程
化学
无机化学
有机化学
冶金
工程类
基因
生物化学
转染
膜
作者
James A. Raiford,Caleb C. Boyd,Axel F. Palmstrom,Eli J. Wolf,Benjamin A. Fearon,Joseph J. Berry,Michael D. McGehee,Stacey F. Bent
标识
DOI:10.1002/aenm.201902353
摘要
Abstract Metal‐halide perovskites show promise as highly efficient solar cells, light‐emitting diodes, and other optoelectronic devices. Ensuring long‐term stability is now a major priority. In this study, an ultrathin (2 nm) layer of polyethylenimine ethoxylated (PEIE) is used to functionalize the surface of C 60 for the subsequent deposition of atomic layer deposition (ALD) SnO 2 , a commonly used electron contact bilayer for p–i–n devices. The enhanced nucleation results in a more continuous initial ALD SnO 2 layer that exhibits superior barrier properties, protecting Cs 0.25 FA 0.75 Pb(Br 0.20 I 0.80 ) 3 films upon direct exposure to high temperatures (200 °C) and water. This surface modification with PEIE translates to more stable solar cells under aggressive testing conditions in air at 60 °C under illumination. This type of “built‐in” barrier layer mitigates degradation pathways not addressed by external encapsulation, such as internal halide or metal diffusion, while maintaining high device efficiency up to 18.5%. This nucleation strategy is also extended to ALD VO x films, demonstrating its potential to be broadly applied to other metal oxide contacts and device architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI