阴极
阳极
化学
化学工程
钝化
电池(电)
水溶液
基质(水族馆)
电化学
阳极氧化
纳米技术
电解质
铝
图层(电子)
材料科学
电极
功率(物理)
物理化学
有机化学
工程类
地质学
物理
海洋学
量子力学
作者
Chunshuang Yan,Chade Lv,Liguang Wang,Wei Cui,Leyuan Zhang,Khang Ngoc Dinh,Huiteng Tan,Chen Wu,Tianpin Wu,Yang Ren,Jieqiong Chen,Zheng Liu,Madhavi Srinivasan,Xianhong Rui,Qingyu Yan,Guihua Yu
摘要
Aqueous Al-ion batteries (AAIBs) are the subject of great interest due to the inherent safety and high theoretical capacity of aluminum. The high abundancy and easy accessibility of aluminum raw materials further make AAIBs appealing for grid-scale energy storage. However, the passivating oxide film formation and hydrogen side reactions at the aluminum anode as well as limited availability of the cathode lead to low discharge voltage and poor cycling stability. Here, we proposed a new AAIB system consisting of an AlxMnO2 cathode, a zinc substrate-supported Zn-Al alloy anode, and an Al(OTF)3 aqueous electrolyte. Through the in situ electrochemical activation of MnO, the cathode was synthesized to incorporate a two-electron reaction, thus enabling its high theoretical capacity. The anode was realized by a simple deposition process of Al3+ onto Zn foil substrate. The featured alloy interface layer can effectively alleviate the passivation and suppress the dendrite growth, ensuring ultralong-term stable aluminum stripping/plating. The architected cell delivers a record-high discharge voltage plateau near 1.6 V and specific capacity of 460 mAh g-1 for over 80 cycles. This work provides new opportunities for the development of high-performance and low-cost AAIBs for practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI