高强度聚焦超声
强度(物理)
谐波
超声波
材料科学
运动(物理)
光学
声学
计算机视觉
计算机科学
物理
作者
Yang Han,Gary Y. Hou,Shutao Wang,Elisa E. Konofagou
标识
DOI:10.1088/0031-9155/60/15/5911
摘要
Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p < 0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes.
科研通智能强力驱动
Strongly Powered by AbleSci AI