指数
缩放比例
数学
随机游动
节点(物理)
极限(数学)
路径(计算)
最短路径问题
功能(生物学)
缩放限制
加权网络
订单(交换)
统计物理学
组合数学
复杂网络
计算机科学
统计
数学分析
物理
几何学
图形
哲学
语言学
量子力学
进化生物学
生物
程序设计语言
财务
经济
作者
Meifeng Dai,Xingyi Li,Lifeng Xi
出处
期刊:Chaos
[American Institute of Physics]
日期:2013-07-09
卷期号:23 (3)
被引量:39
摘要
In this paper, we introduce new models of non-homogenous weighted Koch networks on real traffic systems depending on the three scaling factors r1,r2,r3∈(0,1). Inspired by the definition of the average weighted shortest path (AWSP), we define the average weighted receiving time (AWRT). Assuming that the walker, at each step, starting from its current node, moves uniformly to any of its neighbors, we show that in large network, the AWRT grows as power-law function of the network order with the exponent, represented by θ(r1,r2,r3)=log4(1+r1+r2+r3). Moreover, the AWSP, in the infinite network order limit, only depends on the sum of scaling factors r1,r2,r3.
科研通智能强力驱动
Strongly Powered by AbleSci AI