Nanoparticle solutions as adhesives for gels and biological tissues

聚合物 胶粘剂 自愈水凝胶 材料科学 纳米颗粒 吸附 粘附 纳米技术 化学 化学工程 复合材料 高分子化学 图层(电子) 有机化学 工程类
作者
Séverine Rose,Alexandre Prévoteau,Paul Elzière,Dominique Hourdet,Alba Marcellan,Ludwik Leibler
出处
期刊:Nature [Springer Nature]
卷期号:505 (7483): 382-385 被引量:691
标识
DOI:10.1038/nature12806
摘要

Adhesives are made of polymers because, unlike other materials, polymers ensure good contact between surfaces by covering asperities, and retard the fracture of adhesive joints by dissipating energy under stress. But using polymers to 'glue' together polymer gels is difficult, requiring chemical reactions, heating, pH changes, ultraviolet irradiation or an electric field. Here we show that strong, rapid adhesion between two hydrogels can be achieved at room temperature by spreading a droplet of a nanoparticle solution on one gel's surface and then bringing the other gel into contact with it. The method relies on the nanoparticles' ability to adsorb onto polymer gels and to act as connectors between polymer chains, and on the ability of polymer chains to reorganize and dissipate energy under stress when adsorbed onto nanoparticles. We demonstrate this approach by pressing together pieces of hydrogels, for approximately 30 seconds, that have the same or different chemical properties or rigidities, using various solutions of silica nanoparticles, to achieve a strong bond. Furthermore, we show that carbon nanotubes and cellulose nanocrystals that do not bond hydrogels together become adhesive when their surface chemistry is modified. To illustrate the promise of the method for biological tissues, we also glued together two cut pieces of calf's liver using a solution of silica nanoparticles. As a rapid, simple and efficient way to assemble gels or tissues, this method is desirable for many emerging technological and medical applications such as microfluidics, actuation, tissue engineering and surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助可爱的电话采纳,获得10
刚刚
刚刚
1秒前
1秒前
yufanhui应助piaobo55采纳,获得30
2秒前
2秒前
guoke发布了新的文献求助20
3秒前
祖寻菡发布了新的文献求助10
4秒前
Yang Gao发布了新的文献求助10
4秒前
小毛发布了新的文献求助10
6秒前
linmo发布了新的文献求助10
6秒前
CodeCraft应助堪半凡采纳,获得10
6秒前
issac_wan发布了新的文献求助10
6秒前
halosheep完成签到,获得积分10
7秒前
小蘑菇应助称心语风采纳,获得10
8秒前
赘婿应助婷婷采纳,获得10
8秒前
辛勤芝麻完成签到,获得积分10
9秒前
终澈完成签到,获得积分20
9秒前
10秒前
cry应助尚帝采纳,获得10
10秒前
11秒前
12秒前
forever发布了新的文献求助10
12秒前
隐形曼青应助Emma采纳,获得10
12秒前
Ratel发布了新的文献求助10
13秒前
issac_wan完成签到,获得积分10
13秒前
Whale完成签到,获得积分10
14秒前
Singularity应助lxl采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
NPC应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075882
求助须知:如何正确求助?哪些是违规求助? 2728806
关于积分的说明 7506117
捐赠科研通 2377016
什么是DOI,文献DOI怎么找? 1260379
科研通“疑难数据库(出版商)”最低求助积分说明 610960
版权声明 597151