Ensemble-based big data analytics of lithofacies for automatic development of petroleum reservoirs

集成学习 计算机科学 人工智能 机器学习 大数据 随机森林 阿达布思 储层建模 集合预报 原始数据 数据挖掘 支持向量机 工程类 石油工程 程序设计语言
作者
Saurabh Tewari,U. D. Dwivedi
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:128: 937-947 被引量:55
标识
DOI:10.1016/j.cie.2018.08.018
摘要

Big data-driven ensemble learning is explored in this paper for quantitative geological lithofacies modeling, which is an integral and challenging part of petroleum reservoir development and characterization. Quantitative lithofacies modeling involves detection and recognition of underlying subsurface rock’s lithofacies. It requires real-time data acquisition, handling, storage, conditioning, analysis, and interpretation of raw sensory petroleum logging data. The real-time well-logs data collected from the sensor-based tools suffer from complications such as noise, nonlinearity, imbalance, and high-dimensionality which makes the prediction task more challenging. The existing literature on quantitative lithofacies modeling includes several data-driven techniques ranging from conventional well-logs to artificial intelligence (AI). Recently, multiple classifiers based Ensemble learners have been found to be more robust and reliable paradigms for detection and identification tasks in various machine learning applications, however, these are not well embraced in the petroleum industry. Ensemble methodology combines diverse expert’s opinions to obtain overall ensemble decision which in turn reduces the risk of a wrong decision. Thus, the uncertainties associated with complex reservoir data can be better handled by the use of Ensemble learners than the existing single learner based conventional models. Ensemble-based big data analytics, proposed in the paper, includes development and comparative performance testing of five popular ensemble methods (viz. Bagging, AdaBoost, Rotation forest, Random subspace, and DECORATE) for quantitative lithofacies modeling. Seven state-of-the-art base classifiers were used as members of different Ensemble learners for the analysis of Kansas (U.S.A.) oil-field data. The proposed techniques have been implemented on the widely used WEKA platform. The comparative performance analysis of the proposed techniques, presented in the paper, confirms its supremacy over the existing techniques used for quantitative lithofacies modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
736550205应助titamisulydia采纳,获得10
刚刚
科研通AI2S应助平安顺遂采纳,获得10
1秒前
1秒前
英姑应助辰星采纳,获得10
2秒前
3秒前
3秒前
4秒前
打打应助飞兔采纳,获得10
4秒前
852应助proteinpurify采纳,获得10
5秒前
8秒前
YZT8848完成签到,获得积分10
8秒前
喵总发布了新的文献求助10
9秒前
薰硝壤应助阿腾采纳,获得10
12秒前
14秒前
Akim应助喵总采纳,获得10
15秒前
义气若冰发布了新的文献求助10
16秒前
pbc完成签到,获得积分10
17秒前
19秒前
owoow完成签到,获得积分20
19秒前
21秒前
难摧发布了新的文献求助10
21秒前
Orange应助阿腾采纳,获得10
21秒前
22秒前
昨夜星辰完成签到,获得积分10
22秒前
23秒前
owoow发布了新的文献求助10
23秒前
24秒前
24秒前
proteinpurify发布了新的文献求助10
26秒前
辰星发布了新的文献求助10
26秒前
南北发布了新的文献求助10
30秒前
rynchee完成签到 ,获得积分10
31秒前
31秒前
32秒前
lob7完成签到,获得积分10
32秒前
糊糊完成签到 ,获得积分10
33秒前
34秒前
研友_LN7AOn发布了新的文献求助10
34秒前
PatrickW发布了新的文献求助50
35秒前
辰星发布了新的文献求助10
36秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
宽禁带半导体紫外光电探测器 588
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792975
关于积分的说明 7804827
捐赠科研通 2449305
什么是DOI,文献DOI怎么找? 1303150
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291