计算机科学
序列(生物学)
卷积神经网络
深度学习
人工智能
计算
翻译(生物学)
加速
机器翻译
循环神经网络
卷积码
序列学习
语音识别
算法
人工神经网络
解码方法
并行计算
信使核糖核酸
基因
生物
生物化学
遗传学
化学
作者
Jonas Gehring,Michael Auli,David Grangier,Denis Yarats,Yann Dauphin
出处
期刊:International Conference on Machine Learning
日期:2017-05-08
卷期号:: 1243-1252
被引量:1471
摘要
The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks. Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fixed and independent of the input length. Our use of gated linear units eases gradient propagation and we equip each decoder layer with a separate attention module. We outperform the accuracy of the deep LSTM setup of Wu et al. (2016) on both WMT'14 English-German and WMT'14 English-French translation at an order of magnitude faster speed, both on GPU and CPU.
科研通智能强力驱动
Strongly Powered by AbleSci AI