已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection

卷积神经网络 计算机科学 目标检测 对象(语法) 人工智能 深度学习 人工神经网络 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉
作者
Amudhan A.N.,Sudheer A.P.
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:119: 104396-104396 被引量:31
标识
DOI:10.1016/j.imavis.2022.104396
摘要

Object detection has been an active area of research over the past two decades. The complexity of detecting an object increases with the increase in object speed and decrease in object size. Similar scenarios are observed in sports video analysis, vision systems of robots, driverless cars and much more. This led to the need for an efficient neural network that can detect small size objects. Further, most of the real-time applications use single board computers such as Jetson Nano, TX2, Xavier, Raspberry Pi and the like. The state-of-the-art of Deep Learning models such as YOLOv4, v3, YOLOR, YOLOX and SSD show poor run-time performance on these devices. Their lighter versions YOLOv3-tiny, YOLOv4-tiny and YOLOX-nano run nearly at 24 frames per second (fps) on Jetson Nano; however, their detection accuracy on small-sized objects is unsatisfactory. This paper focuses on developing a computationally lighter Convolutional Neural network(CNN) to detect small-sized objects efficiently. A novel hypermetropic CNN was developed to meet the above requirements. The improvement in detection is made by extracting more features from the shallow layers and transferring low-level features to the deeper layers. The network is hypermetropic because it performs well on distant objects and lags on nearby objects. The proposed model's performance is compared with the state-of-the-art models on various public datasets such as the VEDAI dataset, Visdrone dataset, and a few classes from the MS COCO and OID dataset. The proposed model shows impressive improvements in detecting small-size objects, and a 32% increase in the fps is observed on Jetson Nano. • A novel CNN architecture to detect small-sized objects is proposed. • Validation is carried out on various public datasets. • Results show impressive improvements in detection accuracy and real-time performance. • It is lighter, smaller and has reduced training time than the state-of-the-art models. • It is suitable for use in any single-board computer and platforms devoid of GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真不错完成签到,获得积分10
刚刚
思源应助DD采纳,获得10
2秒前
3秒前
3秒前
天天快乐应助好天气采纳,获得10
6秒前
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
归尘应助科研通管家采纳,获得30
11秒前
归尘应助科研通管家采纳,获得30
11秒前
归尘应助科研通管家采纳,获得30
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
归尘应助科研通管家采纳,获得30
11秒前
12秒前
淳于惜雪完成签到 ,获得积分10
12秒前
12秒前
达布妞发布了新的文献求助10
13秒前
-17完成签到 ,获得积分10
13秒前
14秒前
小马甲应助直率孤风采纳,获得10
15秒前
领导范儿应助Rzozsye采纳,获得10
17秒前
chen完成签到,获得积分10
18秒前
ifly发布了新的文献求助10
18秒前
19秒前
CodeCraft应助agf采纳,获得10
20秒前
领导范儿应助ZBQ采纳,获得10
20秒前
充电宝应助火鸡味锅巴采纳,获得10
22秒前
April完成签到,获得积分10
22秒前
君兰发布了新的文献求助10
23秒前
在水一方应助misaka采纳,获得10
23秒前
研研研究不出完成签到 ,获得积分10
24秒前
Bin发布了新的文献求助10
24秒前
好天气发布了新的文献求助10
25秒前
ifly完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279