Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection

卷积神经网络 计算机科学 目标检测 对象(语法) 人工智能 深度学习 人工神经网络 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉
作者
Amudhan A.N.,Sudheer A.P.
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:119: 104396-104396 被引量:31
标识
DOI:10.1016/j.imavis.2022.104396
摘要

Object detection has been an active area of research over the past two decades. The complexity of detecting an object increases with the increase in object speed and decrease in object size. Similar scenarios are observed in sports video analysis, vision systems of robots, driverless cars and much more. This led to the need for an efficient neural network that can detect small size objects. Further, most of the real-time applications use single board computers such as Jetson Nano, TX2, Xavier, Raspberry Pi and the like. The state-of-the-art of Deep Learning models such as YOLOv4, v3, YOLOR, YOLOX and SSD show poor run-time performance on these devices. Their lighter versions YOLOv3-tiny, YOLOv4-tiny and YOLOX-nano run nearly at 24 frames per second (fps) on Jetson Nano; however, their detection accuracy on small-sized objects is unsatisfactory. This paper focuses on developing a computationally lighter Convolutional Neural network(CNN) to detect small-sized objects efficiently. A novel hypermetropic CNN was developed to meet the above requirements. The improvement in detection is made by extracting more features from the shallow layers and transferring low-level features to the deeper layers. The network is hypermetropic because it performs well on distant objects and lags on nearby objects. The proposed model's performance is compared with the state-of-the-art models on various public datasets such as the VEDAI dataset, Visdrone dataset, and a few classes from the MS COCO and OID dataset. The proposed model shows impressive improvements in detecting small-size objects, and a 32% increase in the fps is observed on Jetson Nano. • A novel CNN architecture to detect small-sized objects is proposed. • Validation is carried out on various public datasets. • Results show impressive improvements in detection accuracy and real-time performance. • It is lighter, smaller and has reduced training time than the state-of-the-art models. • It is suitable for use in any single-board computer and platforms devoid of GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
偌小梁发布了新的文献求助10
刚刚
喝水吗完成签到,获得积分10
1秒前
mz完成签到 ,获得积分10
1秒前
HXH完成签到,获得积分20
1秒前
赘婿应助要努力坚持啊采纳,获得10
1秒前
uhjms发布了新的文献求助20
1秒前
1秒前
KTaoL完成签到,获得积分10
3秒前
能干碧彤发布了新的文献求助10
3秒前
在水一方应助风趣鲜花采纳,获得10
3秒前
B612小行星发布了新的文献求助10
3秒前
4秒前
刘雷雷不爱读文献完成签到,获得积分10
4秒前
YY发布了新的文献求助10
4秒前
4秒前
zzzzzzz完成签到,获得积分20
5秒前
戴琳完成签到,获得积分10
5秒前
6秒前
迎风竹林下应助lvyoyo采纳,获得10
6秒前
6秒前
6秒前
哩哩完成签到,获得积分10
6秒前
霸气鹏飞完成签到,获得积分20
7秒前
7秒前
7秒前
念白完成签到,获得积分10
7秒前
小桃子完成签到,获得积分10
7秒前
8秒前
可靠馒头发布了新的文献求助10
8秒前
852应助Nature采纳,获得10
9秒前
直率冷之发布了新的文献求助10
9秒前
劉浏琉发布了新的文献求助10
10秒前
Louis发布了新的文献求助10
10秒前
qq发布了新的文献求助10
10秒前
无花果应助VDC采纳,获得10
10秒前
大黄完成签到,获得积分20
11秒前
11秒前
传奇3应助哩哩采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3691352
求助须知:如何正确求助?哪些是违规求助? 3241807
关于积分的说明 9841136
捐赠科研通 2953707
什么是DOI,文献DOI怎么找? 1619323
邀请新用户注册赠送积分活动 765892
科研通“疑难数据库(出版商)”最低求助积分说明 739603