清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection

卷积神经网络 计算机科学 目标检测 对象(语法) 人工智能 深度学习 人工神经网络 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉
作者
A.N. Amudhan,A.P. Sudheer
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:119: 104396-104396 被引量:5
标识
DOI:10.1016/j.imavis.2022.104396
摘要

Object detection has been an active area of research over the past two decades. The complexity of detecting an object increases with the increase in object speed and decrease in object size. Similar scenarios are observed in sports video analysis, vision systems of robots, driverless cars and much more. This led to the need for an efficient neural network that can detect small size objects. Further, most of the real-time applications use single board computers such as Jetson Nano, TX2, Xavier, Raspberry Pi and the like. The state-of-the-art of Deep Learning models such as YOLOv4, v3, YOLOR, YOLOX and SSD show poor run-time performance on these devices. Their lighter versions YOLOv3-tiny, YOLOv4-tiny and YOLOX-nano run nearly at 24 frames per second (fps) on Jetson Nano; however, their detection accuracy on small-sized objects is unsatisfactory. This paper focuses on developing a computationally lighter Convolutional Neural network(CNN) to detect small-sized objects efficiently. A novel hypermetropic CNN was developed to meet the above requirements. The improvement in detection is made by extracting more features from the shallow layers and transferring low-level features to the deeper layers. The network is hypermetropic because it performs well on distant objects and lags on nearby objects. The proposed model's performance is compared with the state-of-the-art models on various public datasets such as the VEDAI dataset, Visdrone dataset, and a few classes from the MS COCO and OID dataset. The proposed model shows impressive improvements in detecting small-size objects, and a 32% increase in the fps is observed on Jetson Nano. • A novel CNN architecture to detect small-sized objects is proposed. • Validation is carried out on various public datasets. • Results show impressive improvements in detection accuracy and real-time performance. • It is lighter, smaller and has reduced training time than the state-of-the-art models. • It is suitable for use in any single-board computer and platforms devoid of GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
凡人丿完成签到,获得积分10
20秒前
一分发布了新的文献求助50
46秒前
席江海完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
wangye完成签到 ,获得积分10
1分钟前
2分钟前
Amadeus发布了新的文献求助10
2分钟前
Amadeus完成签到,获得积分10
2分钟前
实力不允许完成签到 ,获得积分10
2分钟前
3分钟前
ww完成签到,获得积分10
3分钟前
波里舞完成签到 ,获得积分10
4分钟前
4分钟前
郑先生完成签到 ,获得积分10
4分钟前
科研通AI2S应助lilili采纳,获得10
4分钟前
刘刘完成签到 ,获得积分10
5分钟前
lilili发布了新的文献求助10
5分钟前
5分钟前
今天又来搬砖啦完成签到,获得积分10
7分钟前
川藏客完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
蔡俊辉发布了新的文献求助10
8分钟前
8分钟前
Eri_SCI完成签到 ,获得积分10
8分钟前
8分钟前
8R60d8应助付怀松采纳,获得10
8分钟前
mzhang2完成签到 ,获得积分10
10分钟前
zai完成签到 ,获得积分10
10分钟前
10分钟前
hugeyoung发布了新的文献求助10
10分钟前
hugeyoung完成签到,获得积分10
11分钟前
红箭烟雨完成签到,获得积分10
11分钟前
11分钟前
wy发布了新的文献求助10
12分钟前
脑洞疼应助qdlsc采纳,获得10
12分钟前
12分钟前
wy完成签到,获得积分10
12分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142805
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807147
捐赠科研通 2449931
什么是DOI,文献DOI怎么找? 1303553
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350