亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection

卷积神经网络 计算机科学 目标检测 对象(语法) 人工智能 深度学习 人工神经网络 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉
作者
Amudhan A.N.,Sudheer A.P.
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:119: 104396-104396 被引量:31
标识
DOI:10.1016/j.imavis.2022.104396
摘要

Object detection has been an active area of research over the past two decades. The complexity of detecting an object increases with the increase in object speed and decrease in object size. Similar scenarios are observed in sports video analysis, vision systems of robots, driverless cars and much more. This led to the need for an efficient neural network that can detect small size objects. Further, most of the real-time applications use single board computers such as Jetson Nano, TX2, Xavier, Raspberry Pi and the like. The state-of-the-art of Deep Learning models such as YOLOv4, v3, YOLOR, YOLOX and SSD show poor run-time performance on these devices. Their lighter versions YOLOv3-tiny, YOLOv4-tiny and YOLOX-nano run nearly at 24 frames per second (fps) on Jetson Nano; however, their detection accuracy on small-sized objects is unsatisfactory. This paper focuses on developing a computationally lighter Convolutional Neural network(CNN) to detect small-sized objects efficiently. A novel hypermetropic CNN was developed to meet the above requirements. The improvement in detection is made by extracting more features from the shallow layers and transferring low-level features to the deeper layers. The network is hypermetropic because it performs well on distant objects and lags on nearby objects. The proposed model's performance is compared with the state-of-the-art models on various public datasets such as the VEDAI dataset, Visdrone dataset, and a few classes from the MS COCO and OID dataset. The proposed model shows impressive improvements in detecting small-size objects, and a 32% increase in the fps is observed on Jetson Nano. • A novel CNN architecture to detect small-sized objects is proposed. • Validation is carried out on various public datasets. • Results show impressive improvements in detection accuracy and real-time performance. • It is lighter, smaller and has reduced training time than the state-of-the-art models. • It is suitable for use in any single-board computer and platforms devoid of GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
清脆的飞丹完成签到,获得积分10
26秒前
55秒前
1分钟前
Allen发布了新的文献求助30
1分钟前
红娘发布了新的文献求助10
1分钟前
yingwang完成签到 ,获得积分10
1分钟前
1分钟前
红娘完成签到,获得积分10
1分钟前
1分钟前
飞天大南瓜完成签到,获得积分10
1分钟前
笑点低的斑马完成签到,获得积分10
1分钟前
橙子完成签到 ,获得积分10
1分钟前
铭铭铭完成签到,获得积分10
1分钟前
科研通AI6应助Allen采纳,获得10
1分钟前
共享精神应助起名太难了采纳,获得10
1分钟前
2分钟前
2分钟前
taster发布了新的文献求助10
2分钟前
2分钟前
春秋发布了新的文献求助10
2分钟前
搜集达人应助taster采纳,获得10
2分钟前
2分钟前
春秋完成签到,获得积分20
2分钟前
PAIDAXXXX完成签到,获得积分10
2分钟前
困困发布了新的文献求助10
2分钟前
困困完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
顾矜应助sanner采纳,获得10
3分钟前
情怀应助Alay采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
sanner发布了新的文献求助10
3分钟前
3分钟前
Alay发布了新的文献求助10
3分钟前
科研通AI6应助sanner采纳,获得10
3分钟前
小西完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助有趣的银采纳,获得10
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232790
求助须知:如何正确求助?哪些是违规求助? 4401986
关于积分的说明 13699526
捐赠科研通 4268459
什么是DOI,文献DOI怎么找? 2342582
邀请新用户注册赠送积分活动 1339590
关于科研通互助平台的介绍 1296365