Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection

卷积神经网络 计算机科学 目标检测 对象(语法) 人工智能 深度学习 人工神经网络 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉
作者
Amudhan A.N.,Sudheer A.P.
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:119: 104396-104396 被引量:31
标识
DOI:10.1016/j.imavis.2022.104396
摘要

Object detection has been an active area of research over the past two decades. The complexity of detecting an object increases with the increase in object speed and decrease in object size. Similar scenarios are observed in sports video analysis, vision systems of robots, driverless cars and much more. This led to the need for an efficient neural network that can detect small size objects. Further, most of the real-time applications use single board computers such as Jetson Nano, TX2, Xavier, Raspberry Pi and the like. The state-of-the-art of Deep Learning models such as YOLOv4, v3, YOLOR, YOLOX and SSD show poor run-time performance on these devices. Their lighter versions YOLOv3-tiny, YOLOv4-tiny and YOLOX-nano run nearly at 24 frames per second (fps) on Jetson Nano; however, their detection accuracy on small-sized objects is unsatisfactory. This paper focuses on developing a computationally lighter Convolutional Neural network(CNN) to detect small-sized objects efficiently. A novel hypermetropic CNN was developed to meet the above requirements. The improvement in detection is made by extracting more features from the shallow layers and transferring low-level features to the deeper layers. The network is hypermetropic because it performs well on distant objects and lags on nearby objects. The proposed model's performance is compared with the state-of-the-art models on various public datasets such as the VEDAI dataset, Visdrone dataset, and a few classes from the MS COCO and OID dataset. The proposed model shows impressive improvements in detecting small-size objects, and a 32% increase in the fps is observed on Jetson Nano. • A novel CNN architecture to detect small-sized objects is proposed. • Validation is carried out on various public datasets. • Results show impressive improvements in detection accuracy and real-time performance. • It is lighter, smaller and has reduced training time than the state-of-the-art models. • It is suitable for use in any single-board computer and platforms devoid of GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研废物完成签到,获得积分10
刚刚
晖晖shining发布了新的文献求助10
1秒前
1秒前
Owen应助peng采纳,获得10
2秒前
3秒前
YZ完成签到,获得积分10
3秒前
丽江阿镇完成签到,获得积分10
3秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
4秒前
5秒前
连难胜发布了新的文献求助10
5秒前
执着新蕾发布了新的文献求助10
8秒前
七斤文发布了新的文献求助10
8秒前
甜蜜阑悦发布了新的文献求助10
9秒前
10秒前
英姑应助lignin采纳,获得10
10秒前
11秒前
Ftplanet发布了新的文献求助10
11秒前
小李叭叭完成签到,获得积分10
12秒前
cureall应助魏笑白采纳,获得10
12秒前
Loooong应助jaderuan采纳,获得60
13秒前
英吹斯挺应助111采纳,获得10
13秒前
七斤文完成签到,获得积分10
14秒前
灰灰一定行完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
专注巨人发布了新的文献求助10
15秒前
15秒前
15秒前
peng发布了新的文献求助10
17秒前
18秒前
18秒前
herococa应助科研通管家采纳,获得10
18秒前
ED应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
herococa应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954557
求助须知:如何正确求助?哪些是违规求助? 3500718
关于积分的说明 11100747
捐赠科研通 3231204
什么是DOI,文献DOI怎么找? 1786337
邀请新用户注册赠送积分活动 869958
科研通“疑难数据库(出版商)”最低求助积分说明 801737