Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards

人工智能 块(置换群论) 聚类分析 图形 模式识别(心理学) 数学 计算机科学 计算机视觉 几何学 离散数学
作者
Zhengtong Ning,Lufeng Luo,XinMing Ding,Zhiqiang Dong,Bofeng Yang,Jinghui Cai,Weilin Chen,Qinghua Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106878-106878 被引量:41
标识
DOI:10.1016/j.compag.2022.106878
摘要

To improve the operational efficiency of and to prevent possible collision damage in the near-neighbor multi-target picking of sweet peppers by robots in densely planted complex orchards, this study proposes an algorithm for recognizing sweet peppers and planning a picking sequence called AYDY. First, the convolutional block attention module is embedded into the you only look once model (YOLO-V4), and this combined model is used to recognize and localize sweet peppers. Then, the clustering algorithm for the fast search-and-find of density peaks is improved based on the inflection points and gaps of a decision graph. Sweet peppers with multiple near-neighbor targets are automatically partitioned into picking clusters. An anti-collision picking sequence for a picking cluster is determined based on the experience of experts. The algorithm combines Gaussian distance weights with the winner-takes-all approach as an optic neural filter. In tests, the F1-score of this method for sweet peppers in a densely planted environment was 91.84%, which is a 9.14% improvement compared to YOLO-V4. The average localization accuracy and collision-free harvesting success rate were 89.55% and 90.04%, respectively. The recognition and localization time for a single image was 0.3033 s. The time to plan a picking sequence for a single image was 0.283 s. When the robotic arm harvested 22 and 24 sweet peppers, compared to sequential and stochastic planning, the proposed method had higher collision-free picking rates by 18.18, 18.18, 16.67, and 25 percentage points, respectively. This method can accurately detect sweet peppers, reduce collision damage, and improve picking efficiency in high-density orchard environments. This study may provide technical support for anti-collision picking of sweet peppers by robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
emma完成签到 ,获得积分10
1秒前
汉堡包应助xiaoyi采纳,获得10
1秒前
GPTea完成签到,获得积分0
1秒前
11完成签到,获得积分10
1秒前
小吉麻麻发布了新的文献求助10
2秒前
Vicky完成签到,获得积分10
2秒前
王金志完成签到,获得积分20
2秒前
lichanshen完成签到,获得积分10
2秒前
yang发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
坡坡大王发布了新的文献求助50
4秒前
4秒前
喵喵发布了新的文献求助10
4秒前
顺顺顺发布了新的文献求助10
4秒前
自然的友安完成签到,获得积分20
4秒前
风萧零落完成签到,获得积分10
4秒前
长情白柏发布了新的文献求助10
4秒前
5秒前
科研通AI6应助曦耀采纳,获得30
5秒前
qqqxl完成签到,获得积分10
5秒前
极少发生的重复性发作完成签到,获得积分10
5秒前
搞怪的萃发布了新的文献求助10
5秒前
6秒前
神勇的罡发布了新的文献求助10
6秒前
7秒前
7秒前
灵犀完成签到,获得积分10
7秒前
专注完成签到,获得积分0
7秒前
找找完成签到,获得积分10
7秒前
hjh完成签到,获得积分10
8秒前
12458完成签到,获得积分10
8秒前
李健的小迷弟应助liu采纳,获得10
8秒前
8秒前
wendinfgmei完成签到,获得积分10
9秒前
田志超完成签到,获得积分10
9秒前
感动城完成签到,获得积分10
9秒前
wang发布了新的文献求助50
10秒前
烟花应助自由朋友采纳,获得20
10秒前
天天快乐应助魏铭哲采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188