Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards

人工智能 块(置换群论) 聚类分析 图形 模式识别(心理学) 数学 计算机科学 计算机视觉 几何学 离散数学
作者
Zhengtong Ning,Lufeng Luo,XinMing Ding,Zhiqiang Dong,Bofeng Yang,Jinghui Cai,Weilin Chen,Qinghua Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106878-106878 被引量:30
标识
DOI:10.1016/j.compag.2022.106878
摘要

To improve the operational efficiency of and to prevent possible collision damage in the near-neighbor multi-target picking of sweet peppers by robots in densely planted complex orchards, this study proposes an algorithm for recognizing sweet peppers and planning a picking sequence called AYDY. First, the convolutional block attention module is embedded into the you only look once model (YOLO-V4), and this combined model is used to recognize and localize sweet peppers. Then, the clustering algorithm for the fast search-and-find of density peaks is improved based on the inflection points and gaps of a decision graph. Sweet peppers with multiple near-neighbor targets are automatically partitioned into picking clusters. An anti-collision picking sequence for a picking cluster is determined based on the experience of experts. The algorithm combines Gaussian distance weights with the winner-takes-all approach as an optic neural filter. In tests, the F1-score of this method for sweet peppers in a densely planted environment was 91.84%, which is a 9.14% improvement compared to YOLO-V4. The average localization accuracy and collision-free harvesting success rate were 89.55% and 90.04%, respectively. The recognition and localization time for a single image was 0.3033 s. The time to plan a picking sequence for a single image was 0.283 s. When the robotic arm harvested 22 and 24 sweet peppers, compared to sequential and stochastic planning, the proposed method had higher collision-free picking rates by 18.18, 18.18, 16.67, and 25 percentage points, respectively. This method can accurately detect sweet peppers, reduce collision damage, and improve picking efficiency in high-density orchard environments. This study may provide technical support for anti-collision picking of sweet peppers by robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
李健的小迷弟应助综述王采纳,获得10
8秒前
knowledge159发布了新的文献求助10
9秒前
彭于彦祖应助what采纳,获得20
9秒前
赫连涵柏完成签到,获得积分10
10秒前
阿治发布了新的文献求助10
10秒前
脑洞疼应助笑傲采纳,获得10
12秒前
马俣辰完成签到,获得积分10
14秒前
溜了溜了发布了新的文献求助20
14秒前
领导范儿应助优雅的听兰采纳,获得10
15秒前
马俣辰发布了新的文献求助20
16秒前
16秒前
oceanao应助唠叨的月光采纳,获得10
17秒前
笑笑丶不爱笑完成签到,获得积分10
17秒前
18秒前
haowu发布了新的文献求助10
19秒前
kise发布了新的文献求助10
19秒前
体贴静竹完成签到 ,获得积分10
22秒前
sdysdbd完成签到,获得积分10
22秒前
22秒前
英俊的铭应助赵先森采纳,获得10
24秒前
Sunyfox发布了新的文献求助10
24秒前
25秒前
sparks完成签到 ,获得积分10
25秒前
十八完成签到,获得积分10
25秒前
坏苹果完成签到,获得积分10
27秒前
knowledge159完成签到,获得积分20
30秒前
32秒前
坏苹果发布了新的文献求助10
33秒前
WYP完成签到,获得积分20
34秒前
35秒前
h41692011发布了新的文献求助10
35秒前
36秒前
DY完成签到,获得积分10
37秒前
38秒前
38秒前
赵先森发布了新的文献求助10
39秒前
xu发布了新的文献求助10
40秒前
40秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228