Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards

人工智能 块(置换群论) 聚类分析 图形 模式识别(心理学) 数学 计算机科学 计算机视觉 几何学 离散数学
作者
Zhengtong Ning,Lufeng Luo,XinMing Ding,Zhiqiang Dong,Bofeng Yang,Jinghui Cai,Weilin Chen,Qinghua Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106878-106878 被引量:41
标识
DOI:10.1016/j.compag.2022.106878
摘要

To improve the operational efficiency of and to prevent possible collision damage in the near-neighbor multi-target picking of sweet peppers by robots in densely planted complex orchards, this study proposes an algorithm for recognizing sweet peppers and planning a picking sequence called AYDY. First, the convolutional block attention module is embedded into the you only look once model (YOLO-V4), and this combined model is used to recognize and localize sweet peppers. Then, the clustering algorithm for the fast search-and-find of density peaks is improved based on the inflection points and gaps of a decision graph. Sweet peppers with multiple near-neighbor targets are automatically partitioned into picking clusters. An anti-collision picking sequence for a picking cluster is determined based on the experience of experts. The algorithm combines Gaussian distance weights with the winner-takes-all approach as an optic neural filter. In tests, the F1-score of this method for sweet peppers in a densely planted environment was 91.84%, which is a 9.14% improvement compared to YOLO-V4. The average localization accuracy and collision-free harvesting success rate were 89.55% and 90.04%, respectively. The recognition and localization time for a single image was 0.3033 s. The time to plan a picking sequence for a single image was 0.283 s. When the robotic arm harvested 22 and 24 sweet peppers, compared to sequential and stochastic planning, the proposed method had higher collision-free picking rates by 18.18, 18.18, 16.67, and 25 percentage points, respectively. This method can accurately detect sweet peppers, reduce collision damage, and improve picking efficiency in high-density orchard environments. This study may provide technical support for anti-collision picking of sweet peppers by robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
风中幻儿应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
Shuy应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
顾矜应助怡然冰姬采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
哈利波特发布了新的文献求助10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得30
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
尉迟希望应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
ttkx_8应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得50
2秒前
pluto应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742632
求助须知:如何正确求助?哪些是违规求助? 5409561
关于积分的说明 15345443
捐赠科研通 4883805
什么是DOI,文献DOI怎么找? 2625357
邀请新用户注册赠送积分活动 1574182
关于科研通互助平台的介绍 1531108