Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards

人工智能 块(置换群论) 聚类分析 图形 模式识别(心理学) 数学 计算机科学 计算机视觉 几何学 离散数学
作者
Zhengtong Ning,Lufeng Luo,XinMing Ding,Zhiqiang Dong,Bofeng Yang,Jinghui Cai,Weilin Chen,Qinghua Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106878-106878 被引量:41
标识
DOI:10.1016/j.compag.2022.106878
摘要

To improve the operational efficiency of and to prevent possible collision damage in the near-neighbor multi-target picking of sweet peppers by robots in densely planted complex orchards, this study proposes an algorithm for recognizing sweet peppers and planning a picking sequence called AYDY. First, the convolutional block attention module is embedded into the you only look once model (YOLO-V4), and this combined model is used to recognize and localize sweet peppers. Then, the clustering algorithm for the fast search-and-find of density peaks is improved based on the inflection points and gaps of a decision graph. Sweet peppers with multiple near-neighbor targets are automatically partitioned into picking clusters. An anti-collision picking sequence for a picking cluster is determined based on the experience of experts. The algorithm combines Gaussian distance weights with the winner-takes-all approach as an optic neural filter. In tests, the F1-score of this method for sweet peppers in a densely planted environment was 91.84%, which is a 9.14% improvement compared to YOLO-V4. The average localization accuracy and collision-free harvesting success rate were 89.55% and 90.04%, respectively. The recognition and localization time for a single image was 0.3033 s. The time to plan a picking sequence for a single image was 0.283 s. When the robotic arm harvested 22 and 24 sweet peppers, compared to sequential and stochastic planning, the proposed method had higher collision-free picking rates by 18.18, 18.18, 16.67, and 25 percentage points, respectively. This method can accurately detect sweet peppers, reduce collision damage, and improve picking efficiency in high-density orchard environments. This study may provide technical support for anti-collision picking of sweet peppers by robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CQ完成签到 ,获得积分10
1秒前
dlzheng完成签到 ,获得积分10
1秒前
1秒前
kyJYbs发布了新的文献求助20
1秒前
12345发布了新的文献求助10
2秒前
4秒前
4秒前
Polly完成签到,获得积分10
6秒前
枭逍发布了新的文献求助10
6秒前
8秒前
斯文败类应助anlikek采纳,获得10
8秒前
Lydia完成签到,获得积分10
8秒前
SSR完成签到 ,获得积分10
9秒前
小二郎应助abc采纳,获得10
10秒前
11秒前
科研通AI6应助酷酷的耷采纳,获得10
12秒前
桐桐应助少年的回忆采纳,获得10
13秒前
13秒前
Layman发布了新的文献求助10
15秒前
nifty完成签到 ,获得积分10
16秒前
独特鸽子发布了新的文献求助10
17秒前
strive发布了新的文献求助10
17秒前
活力鸡完成签到 ,获得积分10
19秒前
Ava应助小四喜采纳,获得10
19秒前
bjut发布了新的文献求助10
19秒前
19秒前
溪风不渡完成签到 ,获得积分10
21秒前
21秒前
wangwei发布了新的文献求助50
21秒前
简单面包完成签到,获得积分10
21秒前
TTT发布了新的文献求助30
21秒前
treetree的应助desperado采纳,获得10
22秒前
xiao双月完成签到,获得积分10
22秒前
pp关闭了pp文献求助
22秒前
行健灵山完成签到 ,获得积分10
23秒前
动听的夏真完成签到,获得积分10
23秒前
23秒前
科研通AI6应助酷酷的耷采纳,获得10
28秒前
小蘑菇应助添添采纳,获得10
29秒前
泥過完成签到 ,获得积分10
30秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384107
求助须知:如何正确求助?哪些是违规求助? 4507070
关于积分的说明 14026579
捐赠科研通 4416653
什么是DOI,文献DOI怎么找? 2426089
邀请新用户注册赠送积分活动 1418888
关于科研通互助平台的介绍 1397100