Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards

人工智能 块(置换群论) 聚类分析 图形 模式识别(心理学) 数学 计算机科学 计算机视觉 几何学 离散数学
作者
Zhengtong Ning,Lufeng Luo,XinMing Ding,Zhiqiang Dong,Bofeng Yang,Jinghui Cai,Weilin Chen,Qinghua Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106878-106878 被引量:41
标识
DOI:10.1016/j.compag.2022.106878
摘要

To improve the operational efficiency of and to prevent possible collision damage in the near-neighbor multi-target picking of sweet peppers by robots in densely planted complex orchards, this study proposes an algorithm for recognizing sweet peppers and planning a picking sequence called AYDY. First, the convolutional block attention module is embedded into the you only look once model (YOLO-V4), and this combined model is used to recognize and localize sweet peppers. Then, the clustering algorithm for the fast search-and-find of density peaks is improved based on the inflection points and gaps of a decision graph. Sweet peppers with multiple near-neighbor targets are automatically partitioned into picking clusters. An anti-collision picking sequence for a picking cluster is determined based on the experience of experts. The algorithm combines Gaussian distance weights with the winner-takes-all approach as an optic neural filter. In tests, the F1-score of this method for sweet peppers in a densely planted environment was 91.84%, which is a 9.14% improvement compared to YOLO-V4. The average localization accuracy and collision-free harvesting success rate were 89.55% and 90.04%, respectively. The recognition and localization time for a single image was 0.3033 s. The time to plan a picking sequence for a single image was 0.283 s. When the robotic arm harvested 22 and 24 sweet peppers, compared to sequential and stochastic planning, the proposed method had higher collision-free picking rates by 18.18, 18.18, 16.67, and 25 percentage points, respectively. This method can accurately detect sweet peppers, reduce collision damage, and improve picking efficiency in high-density orchard environments. This study may provide technical support for anti-collision picking of sweet peppers by robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
康康完成签到,获得积分10
2秒前
luoxue完成签到,获得积分10
2秒前
song完成签到 ,获得积分10
2秒前
3秒前
高中生发布了新的文献求助10
4秒前
日尧发布了新的文献求助10
4秒前
4秒前
领导范儿应助YIGE采纳,获得10
5秒前
5秒前
丘比特应助lyp采纳,获得10
6秒前
王科完成签到,获得积分10
7秒前
7秒前
song关注了科研通微信公众号
7秒前
luoxue发布了新的文献求助10
8秒前
英俊的铭应助叶航采纳,获得10
8秒前
传奇3应助苗条的梦之采纳,获得10
10秒前
逆时针发布了新的文献求助30
10秒前
11秒前
13秒前
14秒前
康康发布了新的文献求助10
14秒前
罗翊彰发布了新的文献求助10
14秒前
OK完成签到,获得积分20
14秒前
行歌发布了新的文献求助10
15秒前
16秒前
17秒前
青雉完成签到,获得积分10
18秒前
钢笔完成签到,获得积分10
18秒前
左脸明媚发布了新的文献求助10
18秒前
打打应助耍酷含芙采纳,获得10
18秒前
19秒前
19秒前
自渡完成签到 ,获得积分10
19秒前
20秒前
OK发布了新的文献求助10
20秒前
orange完成签到,获得积分10
20秒前
鲤鱼会赢发布了新的文献求助10
20秒前
LiuKun发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924698
求助须知:如何正确求助?哪些是违规求助? 4194850
关于积分的说明 13029597
捐赠科研通 3966579
什么是DOI,文献DOI怎么找? 2174058
邀请新用户注册赠送积分活动 1191544
关于科研通互助平台的介绍 1101060