亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards

人工智能 块(置换群论) 聚类分析 图形 模式识别(心理学) 数学 计算机科学 计算机视觉 几何学 离散数学
作者
Zhengtong Ning,Lufeng Luo,XinMing Ding,Zhiqiang Dong,Bofeng Yang,Jinghui Cai,Weilin Chen,Qinghua Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106878-106878 被引量:41
标识
DOI:10.1016/j.compag.2022.106878
摘要

To improve the operational efficiency of and to prevent possible collision damage in the near-neighbor multi-target picking of sweet peppers by robots in densely planted complex orchards, this study proposes an algorithm for recognizing sweet peppers and planning a picking sequence called AYDY. First, the convolutional block attention module is embedded into the you only look once model (YOLO-V4), and this combined model is used to recognize and localize sweet peppers. Then, the clustering algorithm for the fast search-and-find of density peaks is improved based on the inflection points and gaps of a decision graph. Sweet peppers with multiple near-neighbor targets are automatically partitioned into picking clusters. An anti-collision picking sequence for a picking cluster is determined based on the experience of experts. The algorithm combines Gaussian distance weights with the winner-takes-all approach as an optic neural filter. In tests, the F1-score of this method for sweet peppers in a densely planted environment was 91.84%, which is a 9.14% improvement compared to YOLO-V4. The average localization accuracy and collision-free harvesting success rate were 89.55% and 90.04%, respectively. The recognition and localization time for a single image was 0.3033 s. The time to plan a picking sequence for a single image was 0.283 s. When the robotic arm harvested 22 and 24 sweet peppers, compared to sequential and stochastic planning, the proposed method had higher collision-free picking rates by 18.18, 18.18, 16.67, and 25 percentage points, respectively. This method can accurately detect sweet peppers, reduce collision damage, and improve picking efficiency in high-density orchard environments. This study may provide technical support for anti-collision picking of sweet peppers by robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ZyO0采纳,获得10
8秒前
LaTeXer应助cy0824采纳,获得200
51秒前
袁小红完成签到 ,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
Dai应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI5应助橙子采纳,获得10
2分钟前
斯文败类应助情红锐采纳,获得10
2分钟前
2分钟前
2分钟前
NexusExplorer应助坚强的云朵采纳,获得10
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
Owen应助科研通管家采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
4分钟前
魔幻的吐司完成签到,获得积分10
4分钟前
zoye完成签到 ,获得积分10
4分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
浮游应助XiongLuck采纳,获得10
4分钟前
领导范儿应助淡然绝山采纳,获得10
4分钟前
ccczzz应助科研通管家采纳,获得20
5分钟前
6分钟前
6分钟前
打打应助坚强的云朵采纳,获得10
6分钟前
Sylvia卉完成签到,获得积分10
6分钟前
witty完成签到,获得积分10
6分钟前
HCCha完成签到,获得积分10
7分钟前
ccczzz应助科研通管家采纳,获得20
7分钟前
Lucas应助科研通管家采纳,获得10
7分钟前
7分钟前
soufle发布了新的文献求助10
7分钟前
gszy1975完成签到,获得积分10
7分钟前
老实的乐儿完成签到 ,获得积分10
8分钟前
8分钟前
聪慧千亦发布了新的文献求助10
8分钟前
聪慧千亦完成签到,获得积分10
8分钟前
wwe完成签到,获得积分10
8分钟前
9分钟前
JC发布了新的文献求助10
9分钟前
小蘑菇应助三哥采纳,获得150
9分钟前
JC完成签到,获得积分10
9分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148677
求助须知:如何正确求助?哪些是违规求助? 4344969
关于积分的说明 13530023
捐赠科研通 4187137
什么是DOI,文献DOI怎么找? 2296041
邀请新用户注册赠送积分活动 1296448
关于科研通互助平台的介绍 1240387