Multiple Organ Localization in Dual-Modality PET/CT Images Based on Transformer Network with One-to-One Object Query

计算机科学 人工智能 最小边界框 卷积神经网络 计算机视觉 人体躯干 变压器 模态(人机交互) 模式识别(心理学) 图像(数学) 量子力学 医学 解剖 物理 电压
作者
Linlin Liu,Hongkai Wang
标识
DOI:10.1145/3524086.3524092
摘要

Localization of multiple organs in PET/CT image is a key step of computer-aided analysis of nuclear medicine images. Human torso organs highly correlate with each other in location and shape. Therefore, utilizing inter-organ geometrical correlation may help improving the organ localization accuracy. In this paper, we construct a Transformer network with one-to-one query architecture for organ bounding box localization in Positron Emission Tomography/Computed Tomography (PET/CT) images. Our method takes advantage of the self-attention mechanism of transformer network to model the inter-organ correlations of positions and sizes. Compared to the state-of-the-arts detection transformer (DETR) network, our one-to-one query architecture has simpler network structure and faster learning convergence. To address the large demand for three-dimensional 3D training images, we propose an effective multi-view localization method based on a 2D pre-trained Transformer network and then back project the multi-view 2D bounding boxes into 3D. Moreover, we propose a dual-modality fusion method to combine the complementary information from the PET and CT images. Experimental results based on 20 testing images demonstrated that our transformer network is more robust than the convolutional neural network (CNN) methods. Our one-to-one query mechanism significantly accelerated the model training speed compared to the DETR model. The fusion of dual modality information also leads to more robust organ localization results than using either single modality alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
桐桐应助圈圈采纳,获得30
4秒前
5秒前
5秒前
bkagyin应助huangrui采纳,获得10
6秒前
广州城建职业技术学院完成签到,获得积分10
6秒前
xy发布了新的文献求助10
6秒前
健忘的友易关注了科研通微信公众号
7秒前
7秒前
dwl完成签到 ,获得积分10
7秒前
7秒前
9秒前
klh发布了新的文献求助10
9秒前
Bonnie发布了新的文献求助10
12秒前
完美世界应助自信松思采纳,获得10
14秒前
14秒前
艾草团完成签到,获得积分10
14秒前
安安发布了新的文献求助10
15秒前
li发布了新的文献求助50
15秒前
哈密瓜发布了新的文献求助10
16秒前
19秒前
久久发布了新的文献求助10
20秒前
22秒前
22秒前
23秒前
25秒前
666完成签到 ,获得积分10
25秒前
伶俐送终发布了新的文献求助10
25秒前
26秒前
小猫来啦发布了新的文献求助150
27秒前
神奇女侠完成签到,获得积分20
27秒前
28秒前
28秒前
28秒前
XShu发布了新的文献求助10
28秒前
明亮青亦完成签到 ,获得积分10
28秒前
28秒前
29秒前
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086