清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent disassembly of electric-vehicle batteries: a forward-looking overview

重新使用 瓶颈 电动汽车 利用 工程类 风险分析(工程) 系统工程 计算机科学 计算机安全 业务 嵌入式系统 功率(物理) 物理 量子力学 废物管理
作者
Kai Meng,Guiyin Xu,Xianghui Peng,Kamal Youcef‐Toumi,Ju Li
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:182: 106207-106207 被引量:72
标识
DOI:10.1016/j.resconrec.2022.106207
摘要

Retired electric-vehicle lithium-ion battery (EV-LIB) packs pose severe environmental hazards. Efficient recovery of these spent batteries is a significant way to achieve closed-loop lifecycle management and a green circular economy. It is crucial for carbon neutralization, and for coping with the environmental and resource challenges associated with the energy transition. EV-LIB disassembly is recognized as a critical bottleneck for mass-scale recycling. Automated disassembly of EV-LIBs is extremely challenging due to the large variety and uncertainty of retired EV-LIBs. Recent advances in artificial intelligence (AI) machine learning (ML) provide new ways for addressing these problems. This study aims to provide a systematic review and forward-looking perspective on how AI/ML methodology can significantly boost EV-LIB intelligent disassembly for achieving sustainable recovery. This work examines the key advances and research opportunities of emerging intelligent technologies for EV-LIB disassembly, and recycling and reuse of industrial products in general. We show that AI could benefit the whole disassembly process, particularly addressing the uncertainty and safety issues. Currently, EV-LIB state prognostics, disassembly decision-making as well as target detection are indicated as promising areas to realize intelligence. The challenges still exist for extensive autonomy due to present AI's inherent limitations, mechanical and chemical complexities, and sustainable benefits concerns. This paper provides the practical map to direct how to implement EV-LIB intelligent disassembly as well as forward-looking perspectives for addressing these challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机械魔尺完成签到 ,获得积分10
1秒前
35秒前
腰果虾仁完成签到 ,获得积分10
43秒前
44秒前
耙耙柑发布了新的文献求助10
48秒前
耙耙柑完成签到 ,获得积分10
1分钟前
从容芮应助科研通管家采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
check003完成签到,获得积分10
1分钟前
1分钟前
Ricardo完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
从容芮应助科研通管家采纳,获得30
3分钟前
33应助科研通管家采纳,获得10
3分钟前
dream完成签到 ,获得积分10
3分钟前
keyan完成签到 ,获得积分10
4分钟前
4分钟前
Vegeta完成签到 ,获得积分10
5分钟前
深情安青应助禾斗石开采纳,获得50
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
volvoamg发布了新的文献求助10
5分钟前
隐形曼青应助volvoamg采纳,获得10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
禾斗石开发布了新的文献求助50
6分钟前
unaqvq完成签到,获得积分20
6分钟前
tuanheqi应助jyy采纳,获得200
6分钟前
unaqvq发布了新的文献求助10
6分钟前
Ganlou应助bji采纳,获得10
7分钟前
英姑应助unaqvq采纳,获得10
7分钟前
从容芮应助bji采纳,获得10
7分钟前
7分钟前
bji完成签到,获得积分10
8分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
何木木完成签到 ,获得积分10
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311205
求助须知:如何正确求助?哪些是违规求助? 2943920
关于积分的说明 8516766
捐赠科研通 2619301
什么是DOI,文献DOI怎么找? 1432193
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649815