A method of calculating phenotypic traits for soybean canopies based on three-dimensional point cloud

天蓬 点云 叶面积指数 数学 性状 生物 遥感 农学 植物 表型 计算机科学 地理 计算机视觉 生物化学 基因
作者
Xiaodan Ma,Bingxue Wei,Haiou Guan,Song Yu
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:68: 101524-101524 被引量:27
标识
DOI:10.1016/j.ecoinf.2021.101524
摘要

Analysis of soybean phenotypes is a core motivation behind soybean breeding. However, amounts of manual measures are required in obtaining canopy phenotypic traits via traditional methods. Moreover, deficiencies such as time consumption, strong subjectivity, and inaccuracy can be also detected in manual measurement. In order to achieve automatic extraction of phenotypic traits in the research of soybean breeding, a method of acquiring soybean phenotypic traits was proposed on the basis of a Kinect sensor with three soybean varieties (incl. KANGXIAN9, KANGXIAN13, and FUDOU6) as research objects, implementing the calculation of plant height (PH), leaf area index (LAI). Firstly, the canopy image information was acquired vertically to extract canopy data with the registration of color images and depth point cloud data. Secondly, a soybean single plant was segmented from the group canopy using the bounding box method; also, the height of the soybean plant was solved using the distance information; meanwhile, the canopy LAI was calculated with extinction coefficients that were optimized by the beer-lambert law. According to experimental results, determination coefficients R 2 of the calculated value and the measured value of the plant height and the leaf area index of the three soybean varieties are greater than 0.94. It can be seen that calculated results can meet the accuracy requirement of phenotypic traits in soybean breeding. • An automatic method of acquiring soybean phenotypic traits was proposed. • The bounding box method was used to segment single plant from the group canopy. • The plant height, LAI was calculated by distance value and the beer-lambert law. • The R 2 of plant height and LAI were 0.97 and 0.94, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的俊驰应助chrysan采纳,获得30
刚刚
不知道完成签到,获得积分10
刚刚
Anonymous完成签到,获得积分10
刚刚
孔雀翎完成签到,获得积分10
刚刚
做实验的猹完成签到,获得积分10
刚刚
哈利波特完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
无情的菲鹰完成签到,获得积分10
1秒前
啦啦啦啦啦完成签到,获得积分10
1秒前
小孟吖完成签到 ,获得积分10
2秒前
称心不尤完成签到 ,获得积分10
2秒前
huyuan完成签到,获得积分10
2秒前
勤恳怀梦完成签到,获得积分10
2秒前
CrisLEE完成签到,获得积分10
2秒前
LEE123完成签到,获得积分10
3秒前
cdragon完成签到,获得积分10
3秒前
QQ发布了新的文献求助10
4秒前
DUN发布了新的文献求助10
4秒前
伍六七完成签到,获得积分10
5秒前
Hello应助无医采纳,获得10
5秒前
舒适的雁风完成签到,获得积分10
7秒前
性静H情逸完成签到,获得积分10
8秒前
球宝完成签到,获得积分10
8秒前
Ava应助XieQinxie采纳,获得10
8秒前
Cyrus完成签到,获得积分10
9秒前
就滴滴勾儿完成签到,获得积分10
9秒前
章鱼小丸子完成签到 ,获得积分10
9秒前
9秒前
加油少年完成签到,获得积分10
10秒前
小蘑菇应助zhangfan采纳,获得10
10秒前
Sean完成签到,获得积分10
10秒前
天天快乐应助hetao286采纳,获得10
11秒前
十四完成签到 ,获得积分10
11秒前
蒙蒙完成签到 ,获得积分10
11秒前
橙子完成签到 ,获得积分10
12秒前
jkaaa完成签到,获得积分10
12秒前
shi0331完成签到,获得积分10
13秒前
13秒前
阿强哥20241101完成签到,获得积分10
14秒前
迷人芫完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259