A method of calculating phenotypic traits for soybean canopies based on three-dimensional point cloud

天蓬 点云 叶面积指数 数学 性状 生物 遥感 农学 植物 表型 计算机科学 地理 计算机视觉 生物化学 基因
作者
Xiaodan Ma,Bingxue Wei,Haiou Guan,Song Yu
出处
期刊:Ecological Informatics [Elsevier]
卷期号:68: 101524-101524 被引量:23
标识
DOI:10.1016/j.ecoinf.2021.101524
摘要

Analysis of soybean phenotypes is a core motivation behind soybean breeding. However, amounts of manual measures are required in obtaining canopy phenotypic traits via traditional methods. Moreover, deficiencies such as time consumption, strong subjectivity, and inaccuracy can be also detected in manual measurement. In order to achieve automatic extraction of phenotypic traits in the research of soybean breeding, a method of acquiring soybean phenotypic traits was proposed on the basis of a Kinect sensor with three soybean varieties (incl. KANGXIAN9, KANGXIAN13, and FUDOU6) as research objects, implementing the calculation of plant height (PH), leaf area index (LAI). Firstly, the canopy image information was acquired vertically to extract canopy data with the registration of color images and depth point cloud data. Secondly, a soybean single plant was segmented from the group canopy using the bounding box method; also, the height of the soybean plant was solved using the distance information; meanwhile, the canopy LAI was calculated with extinction coefficients that were optimized by the beer-lambert law. According to experimental results, determination coefficients R 2 of the calculated value and the measured value of the plant height and the leaf area index of the three soybean varieties are greater than 0.94. It can be seen that calculated results can meet the accuracy requirement of phenotypic traits in soybean breeding. • An automatic method of acquiring soybean phenotypic traits was proposed. • The bounding box method was used to segment single plant from the group canopy. • The plant height, LAI was calculated by distance value and the beer-lambert law. • The R 2 of plant height and LAI were 0.97 and 0.94, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Metrix应助科研通管家采纳,获得20
刚刚
1秒前
小杨完成签到 ,获得积分10
1秒前
从心发布了新的文献求助10
2秒前
2秒前
不安青牛应助奶昔采纳,获得10
2秒前
chao发布了新的文献求助10
2秒前
火星上的菲鹰应助wen采纳,获得10
3秒前
zyh发布了新的文献求助10
4秒前
4秒前
JamesPei应助南兮采纳,获得10
5秒前
5秒前
顺利兰发布了新的文献求助10
5秒前
好好学习完成签到,获得积分10
6秒前
6秒前
小杨关注了科研通微信公众号
6秒前
静途完成签到,获得积分10
6秒前
英俊的战斗机完成签到,获得积分10
6秒前
星黛Lu完成签到,获得积分10
6秒前
可爱的妖丽完成签到,获得积分10
7秒前
李爱国应助无情的白桃采纳,获得10
7秒前
8秒前
8秒前
8秒前
chao完成签到,获得积分10
9秒前
Panting发布了新的文献求助10
9秒前
9秒前
10秒前
易玉燕发布了新的文献求助10
10秒前
10秒前
NN应助深海soda采纳,获得10
10秒前
常葶发布了新的文献求助10
11秒前
11秒前
苏苏发布了新的文献求助10
11秒前
11秒前
巴卡巴卡发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522709
求助须知:如何正确求助?哪些是违规求助? 3103705
关于积分的说明 9266832
捐赠科研通 2800287
什么是DOI,文献DOI怎么找? 1536901
邀请新用户注册赠送积分活动 715181
科研通“疑难数据库(出版商)”最低求助积分说明 708660