铼
金刚石顶砧
同步加速器
表征(材料科学)
衍射
材料科学
X射线晶体学
激光器
氮化物
原位
钻石
化学物理
纳米技术
分析化学(期刊)
化学
光学
复合材料
物理
冶金
有机化学
图层(电子)
色谱法
作者
Leonid Dubrovinsky,Saiana Khandarkhaeva,Timofey Fedotenko,Dominique Laniel,Maxim Bykov,Carlotta Giacobbe,Eleanor Lawrence Bright,Pavel Sedmák,Stella Chariton,Vitali B. Prakapenka,A. V. Ponomareva,Е. А. Смирнова,M. P. Belov,Ferenc Tasnádi,Nina Shulumba,Florian Trybel,Igor A. Abrikosov,Natalia Dubrovinskaia
出处
期刊:Nature
[Springer Nature]
日期:2022-05-11
卷期号:605 (7909): 274-278
被引量:35
标识
DOI:10.1038/s41586-022-04550-2
摘要
Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions1,2. Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell3, producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride Re7N3-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.
科研通智能强力驱动
Strongly Powered by AbleSci AI