Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: Comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation

联氨(抗抑郁剂) 过电位 分解水 电解 析氧 阴极 电解水 无机化学 阳极 化学 电解质 化学工程 材料科学 催化作用 电化学 电极 物理化学 光催化 工程类 生物化学 色谱法
作者
Yiseul Yu,Seung Jun Lee,Jayaraman Theerthagiri,Yeryeong Lee,Myong Yong Choi
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:316: 121603-121603 被引量:150
标识
DOI:10.1016/j.apcatb.2022.121603
摘要

Replacing the kinetically sluggish anodic oxygen evolution reaction (OER) with hydrazine (N2H4) oxidation reaction (HzOR) could be the effective approach for achieving energy-saving hydrogen (H2) fuel production in a water electrolyzer system. Thus, developing the efficient HzOR electrocatalysts, combined with the cathodic H2 evolution reaction (HER) is of vital importance for the high-rate H2 fuel generation as well as for the advancement of a N2H4 fuel cell. Herein, we utilized a facile integrated process of pulsed laser irradiation and sonochemical process to synthesize AuPt alloys by the irradiation of laser to a mixture of Au/Pt solution in methanol/DI water in varied proportions. The AuPt alloy plays a key role in the chemisorption of N2H4 on its surface, forming a dative bond involving electrons of the lone pair of nitrogen in N2H4 and empty orbitals of Pt in the alloy, indicating its high intrinsic activity against HzOR. The optimal composition of Au1Pt8 electrode demonstrates outstanding characteristics of HER with an ultralow overpotential of 26 mV at 10 mA cm−2 in alkaline medium while requiring 502 mV to attain 10 mA cm−2 for HzOR in 0.5 M N2H4/1.0 M KOH electrolyte. In addition, the assembled overall N2H4 splitting electrolyzer cell using Au1Pt8 alloys as both anode and cathode requires cell voltage of only ~0.172 V at 10 mA cm−2 with tremendous stability over 10 h, which is much lower than the voltage of 1.773 V required for the overall water splitting electrolyzer. The present study validates the feasibility of AuPt alloys for stimulating N2H4 fuel cells in the future to achieve both electrical energy generation and high-rate H2 fuel production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助898采纳,获得10
刚刚
大斌完成签到,获得积分10
刚刚
刚刚
素食主义的猫完成签到,获得积分10
1秒前
烂漫的豆芽完成签到,获得积分10
1秒前
1秒前
852应助欧欧欧导采纳,获得10
1秒前
留胡子的白猫完成签到,获得积分10
2秒前
2秒前
桃子e完成签到 ,获得积分10
2秒前
魔幻海豚完成签到,获得积分10
3秒前
tt完成签到,获得积分10
4秒前
唐唐完成签到 ,获得积分10
4秒前
5秒前
NexusExplorer应助不够萌采纳,获得10
5秒前
冰糖葫芦完成签到 ,获得积分10
5秒前
5秒前
听星伴月完成签到,获得积分10
7秒前
狂野世立完成签到,获得积分10
7秒前
深情安青应助shan采纳,获得10
7秒前
喜悦的皮卡丘完成签到,获得积分10
8秒前
jijijibibibi完成签到,获得积分10
8秒前
miao完成签到,获得积分10
8秒前
林甜甜很甜完成签到,获得积分10
8秒前
笑点低的凝阳完成签到,获得积分10
9秒前
妮妮发布了新的文献求助10
9秒前
9秒前
wqwq69完成签到,获得积分10
9秒前
缓慢如南应助Monday采纳,获得10
9秒前
丰富的世界完成签到 ,获得积分10
9秒前
故意的向日葵完成签到,获得积分10
10秒前
abc完成签到 ,获得积分10
10秒前
创创完成签到,获得积分10
10秒前
天天快乐应助博ge采纳,获得10
11秒前
SYLH应助ximu采纳,获得10
11秒前
风趣的觅山完成签到,获得积分10
11秒前
柠檬九分酸完成签到,获得积分10
12秒前
剧院的饭桶完成签到,获得积分10
13秒前
清爽白开水完成签到 ,获得积分10
13秒前
丘比特应助那年采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556269
求助须知:如何正确求助?哪些是违规求助? 3131813
关于积分的说明 9393417
捐赠科研通 2831860
什么是DOI,文献DOI怎么找? 1556519
邀请新用户注册赠送积分活动 726691
科研通“疑难数据库(出版商)”最低求助积分说明 716012