Microcrack Defect Quantification Using a Focusing High-Order SH Guided Wave EMAT: The Physics-Informed Deep Neural Network GuwNet

电磁声换能器 超声波传感器 人工神经网络 导波测试 无损检测 声学 传感器 计算机科学 工程类 电子工程 人工智能 超声波检测 物理 量子力学
作者
Hongyu Sun,Lisha Peng,Jun-Ming Lin,Shen Wang,Wei Zhao,Songling Huang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (5): 3235-3247 被引量:43
标识
DOI:10.1109/tii.2021.3105537
摘要

It is challenging to apply deep learning in professional fields that lack big data support, especially in industrial structure health assessments using ultrasonic guided wave nondestructive testing (NDT) method. To solve this problem, one feasible solution is to introduce the concept of NDT physics into a deep neural network to compensate for the network's poor predictive abilities when trained on small datasets. Therefore, we propose a physics-informed deep neural network, named GuwNet, based on a unidirectional oblique-focusing (UOF) high-frequency, high-order shear horizontal guided wave electromagnetic acoustic transducer (EMAT) to quantify microcrack defects more accurately. First, the designed focused-transmission omnidirectional-reception UOF-EMAT can produce pure high-frequency, high-order guided waves. Through a circumferential arrangement of multiple receiving transducers, the maximum amount of information can be obtained regarding the reflected waves of the defect. This method solves the inherent problems of an EMAT (i.e., low energy conversion efficiency) and achieves effective detection of microcrack defects. Second, we study the quantification principle of microcrack defects suitable for UOF-EMAT, and propose a deep neural network using physical knowledge regarding this theory. We rationally design the network structure based on the quantitative principles and logic obtained from this article. In addition, feedback and feedforward loss functions suitable for evaluating different forms of variables are proposed to integrate the physical concepts of ultrasonic guided wave testing into the neural network training. Finally, we verify the performance of the proposed GuwNet based on the UOF-EMAT. Compared with traditional nonphysics-informed methods, the length, depth, and direction of the quantification errors are reduced to 0.127 mm, 0.279% dt , and 1.843°, respectively, and the average quantification error is reduced by more than 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助qujue001采纳,获得10
1秒前
1秒前
1秒前
豆豆发布了新的文献求助10
2秒前
2秒前
zyx030发布了新的文献求助10
2秒前
自信绮菱发布了新的文献求助10
2秒前
李健的小迷弟应助shuan采纳,获得30
2秒前
2秒前
英俊的筝发布了新的文献求助10
3秒前
4秒前
三金发布了新的文献求助10
4秒前
丹丹完成签到,获得积分10
5秒前
Owen应助热心市民王先生采纳,获得10
5秒前
英俊的铭应助重要的平文采纳,获得30
6秒前
6秒前
寻觅发布了新的文献求助10
6秒前
aojuan完成签到 ,获得积分10
7秒前
一鸣完成签到,获得积分20
8秒前
哦东东完成签到,获得积分10
8秒前
8秒前
平常的以冬完成签到,获得积分10
9秒前
紫色奶萨完成签到,获得积分10
9秒前
张对对发布了新的文献求助10
9秒前
卢皮卡发布了新的文献求助10
10秒前
XIEMIN发布了新的文献求助10
11秒前
调研昵称发布了新的文献求助10
12秒前
12秒前
寻觅完成签到,获得积分10
12秒前
uwu完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
细腻梦安完成签到,获得积分10
15秒前
16秒前
17秒前
YYY应助QR采纳,获得10
18秒前
大模型应助QR采纳,获得10
18秒前
18秒前
lin完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644