Microcrack Defect Quantification Using a Focusing High-Order SH Guided Wave EMAT: The Physics-Informed Deep Neural Network GuwNet

电磁声换能器 超声波传感器 人工神经网络 导波测试 无损检测 声学 传感器 计算机科学 传输(电信) 工程类 电子工程 人工智能 超声波检测 物理 电信 量子力学
作者
Hongyu Sun,Lisha Peng,Jun-Ming Lin,Shen Wang,Wei Zhao,Songling Huang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (5): 3235-3247 被引量:53
标识
DOI:10.1109/tii.2021.3105537
摘要

It is challenging to apply deep learning in professional fields that lack big data support, especially in industrial structure health assessments using ultrasonic guided wave nondestructive testing (NDT) method. To solve this problem, one feasible solution is to introduce the concept of NDT physics into a deep neural network to compensate for the network's poor predictive abilities when trained on small datasets. Therefore, we propose a physics-informed deep neural network, named GuwNet, based on a unidirectional oblique-focusing (UOF) high-frequency, high-order shear horizontal guided wave electromagnetic acoustic transducer (EMAT) to quantify microcrack defects more accurately. First, the designed focused-transmission omnidirectional-reception UOF-EMAT can produce pure high-frequency, high-order guided waves. Through a circumferential arrangement of multiple receiving transducers, the maximum amount of information can be obtained regarding the reflected waves of the defect. This method solves the inherent problems of an EMAT (i.e., low energy conversion efficiency) and achieves effective detection of microcrack defects. Second, we study the quantification principle of microcrack defects suitable for UOF-EMAT, and propose a deep neural network using physical knowledge regarding this theory. We rationally design the network structure based on the quantitative principles and logic obtained from this article. In addition, feedback and feedforward loss functions suitable for evaluating different forms of variables are proposed to integrate the physical concepts of ultrasonic guided wave testing into the neural network training. Finally, we verify the performance of the proposed GuwNet based on the UOF-EMAT. Compared with traditional nonphysics-informed methods, the length, depth, and direction of the quantification errors are reduced to 0.127 mm, 0.279% dt , and 1.843°, respectively, and the average quantification error is reduced by more than 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自强不息完成签到,获得积分10
2秒前
DD立芬完成签到 ,获得积分10
4秒前
jeronimo完成签到,获得积分10
12秒前
松子的ee完成签到 ,获得积分10
14秒前
儒雅的如松完成签到 ,获得积分10
14秒前
jerry完成签到 ,获得积分10
17秒前
17秒前
朴实问筠完成签到 ,获得积分10
19秒前
吨吨完成签到,获得积分10
21秒前
onevip完成签到,获得积分0
26秒前
杨永佳666完成签到 ,获得积分10
26秒前
薛定谔的猫完成签到,获得积分10
28秒前
35秒前
橘子海完成签到 ,获得积分10
36秒前
脑洞疼应助devilfish13采纳,获得10
37秒前
水文小白完成签到,获得积分10
37秒前
devilfish13完成签到,获得积分20
44秒前
47秒前
50秒前
骄傲慕尼黑完成签到,获得积分10
52秒前
devilfish13发布了新的文献求助10
53秒前
cq_2完成签到,获得积分0
54秒前
JrPaleo101发布了新的文献求助100
55秒前
LeuinPonsgi完成签到,获得积分10
56秒前
土豆晴完成签到 ,获得积分10
56秒前
105完成签到 ,获得积分10
1分钟前
1分钟前
sun完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
剑K完成签到,获得积分10
1分钟前
1分钟前
1分钟前
愉快道之完成签到 ,获得积分10
1分钟前
个性的汲完成签到,获得积分10
1分钟前
溯鸣完成签到 ,获得积分10
1分钟前
d_fishier完成签到 ,获得积分10
1分钟前
影像大侠完成签到,获得积分10
1分钟前
fd163c应助个性的汲采纳,获得10
1分钟前
kirisaki完成签到 ,获得积分10
1分钟前
Mt完成签到,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733477
求助须知:如何正确求助?哪些是违规求助? 3277631
关于积分的说明 10003612
捐赠科研通 2993682
什么是DOI,文献DOI怎么找? 1642790
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944