Rethinking Camouflaged Object Detection: Models and Datasets

目标检测 计算机科学 人工智能 水准点(测量) 深度学习 机器学习 特征(语言学) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 对象(语法) 语言学 哲学 大地测量学 地理
作者
Hongbo Bi,Cong Zhang,Kang Wang,Jinghui Tong,Feng Zheng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (9): 5708-5724 被引量:48
标识
DOI:10.1109/tcsvt.2021.3124952
摘要

Camouflaged object detection (COD) is an emerging visual detection task, which aims to locate and distinguish the disguised target in complex backgrounds by imitating the human visual detection system. Recently, COD has attracted increasing attention in computer vision, and a few models of camouflaged object detection have been successfully explored. However, most existing works primarily focus on modeling camouflaged object detection over in-depth analyzing existing COD structures. To the best of our knowledge, a systematic review for COD has not been publicly reported, especially for recently proposed deep learning-based COD models. To make up this vacancy, we firstly proposed a comprehensive review on both COD models and public benchmark datasets and provide potential directions for future COD studies. Specifically, we conduct a comprehensive summary of 39 existing COD models from 1998 to 2021. And then, to facilitate subsequent research on COD, we classify the existing structures into two categories, 27 traditional handcrafted feature-based structures and 12 structures based on deep learning. In addition, we further group traditional handcrafted feature-based structures into six sub-classes based on the detection mechanism: texture, color, motion, intensity, optical flow, and multi-modal fusion. Furthermore, we take an in-depth analysis of the deep learning-based structure based on both detection motivation and detection performance and evaluate the performance of each structure. Moreover, we sum up four widely used COD datasets and describe the details of each one. Finally, we also discuss the limitations of COD and the corresponding solutions to improve detection accuracy. We still mention the relevant applications of camouflaged object detection and its future research directions to promote the development of camouflaged object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观缘分完成签到 ,获得积分10
1秒前
陶醉觅夏发布了新的文献求助10
1秒前
脑洞疼应助123采纳,获得10
2秒前
呆萌元龙关注了科研通微信公众号
2秒前
单凝完成签到,获得积分10
2秒前
周子淦发布了新的文献求助10
4秒前
6秒前
希格玻色子完成签到,获得积分10
6秒前
云云云发布了新的文献求助10
7秒前
温暖的皮皮虾完成签到,获得积分10
9秒前
10秒前
11秒前
Ares完成签到,获得积分10
13秒前
123发布了新的文献求助10
15秒前
闲趣饼干发布了新的文献求助10
15秒前
云云云完成签到,获得积分10
15秒前
16秒前
笨蛋小狗汪汪完成签到,获得积分10
18秒前
19秒前
keikei完成签到,获得积分10
20秒前
20秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
paparazzi221应助科研通管家采纳,获得50
21秒前
bkagyin应助科研通管家采纳,获得30
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
shinysparrow应助科研通管家采纳,获得200
21秒前
21秒前
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
敬老院N号应助科研通管家采纳,获得30
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
OGLE应助科研通管家采纳,获得20
22秒前
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112787
求助须知:如何正确求助?哪些是违规求助? 2763025
关于积分的说明 7673259
捐赠科研通 2418326
什么是DOI,文献DOI怎么找? 1283724
科研通“疑难数据库(出版商)”最低求助积分说明 619449
版权声明 599586