双金属片
法拉第效率
磷化物
析氧
双功能
分解水
化学工程
材料科学
电解
阳极
过电位
制氢
电催化剂
催化作用
化学
无机化学
电解质
电化学
有机化学
电极
物理化学
工程类
光催化
作者
Dan Wu,Jie Hao,Weixing Wang,Yu Yan,Xian‐Zhu Fu,Jing‐Li Luo
出处
期刊:Chemsuschem
[Wiley]
日期:2021-10-28
卷期号:14 (24): 5450-5459
被引量:16
标识
DOI:10.1002/cssc.202101841
摘要
The realization of large-scale H2 production from electrocatalytic water splitting is severely impeded by the kinetically sluggish and economically less viable anodic oxygen evolution reaction. Here, an efficient strategy was established for the concurrent H2 production and oxidative alcohols refining into value-added formate by utilizing self-supported Ni2 P-CoP bifunctional electrocatalysts. Benefiting from high intrinsic activity, abundant active sites, and synergistic promoting effects of bimetallic phosphides, the constructed two-electrode electrolyzer required a cell voltage of around 1.3 V to achieve 10 mA cm-2 , which is more than 200 mV lower than that of pure water splitting. Moreover, simultaneous productions of H2 with near-unity conversion efficiency and formate at high faradaic efficiencies of 99.8 and 89.6 % oxidatively produced from methanol and glycerol, respectively, were achieved with excellent durability. This work presents a general and economic approach toward the fabrication of cost-effective electrocatalysts for energy-efficient and profitable large-scale renewable energy integration.
科研通智能强力驱动
Strongly Powered by AbleSci AI