Chapter 14 Low Temperature Materials and Mechanisms: Applications and Challenges

材料科学 工程物理 工程类
作者
Ray Radebaugh,Yoseph Bar‐Cohen
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 437-476 被引量:1
标识
DOI:10.1201/9781315371962-15
摘要

Mechanisms ........................................................................................................................ 187 7.3 Figure of Merit of Piezoelectric Materials ...................................................................... 189 7.4 Materials Properties versus Temperature ...................................................................... 1927.4.1 Cryogenic PZT Ceramics ...................................................................................... 192 7.4.2 Cryogenic Relaxor-PT Crystals ............................................................................ 1967.5 Recent Development of Cryogenic Actuators and Sensors .........................................200 7.5.1 Multilayer Stack Actuators ...................................................................................200 7.5.2 Piezoelectric Motors .............................................................................................. 201 7.5.3 Active Tuning in Cryogenic Superconducting Radio Frequency (SRF)Cavities .................................................................................................................... 204 7.5.4 Structural Health Monitoring .............................................................................. 204 7.5.5 Cryogenic Liquid Sensing .................................................................................... 205 7.5.6 MEMS and NEMS Devices at Cryogenic Temperature .................................... 2067.6 Summary ............................................................................................................................. 207 Acknowledgments ...................................................................................................................... 208 References ..................................................................................................................................... 208material processing, hardening [Kalia, 2010; Zurecki, 2005], and quenching [Barron, 1982; Zurecki, 2005]. Many of these systems require actuators to control structure shapes, to operate local valves to control cryo¤uid ¤ows, or to position structures during operation. In the aerospace area, there are a variety of potential mission targets identi†ed in theDecadal Survey that have cryogenic environments [Squyres, 2011]. For example, unlike Earth, other bodies in the solar system do reach the cryogenic temperature range, as shown in Figure 7.1. The outer planets including the dwarf planet Pluto and the moons of Saturn and Neptune all reach temperatures below –150°C. Even though the average temperatures on the Moon and Mars are within the range of Earth temperatures, the lack of substantial atmosphere on these bodies produces extreme temperature ranges with the poles of Mars reaching –140°C and the nighttime temperature of the Moon reaching –170°C. Although Mercury is the closest planet to the Sun, it has temperature extremes that reach –173°C. The need for reliable surface sampling and handling technology has been identi†ed as a challenge that must be met if sampling missions to these destinations are to move past the planning stage. As well as the standard actuators required for exploration systems [Sherrit, 2005], novel actuators and sensors are required for valves [Sherrit et al., 2014], vibrators [Sherrit et al., 2009], drills [Bar-Cohen and Zacny, 2009], penetrators [Bao et al., 2006], sonar [Towner et al., 2006], microphones [Fulchignoni and Ferri, 2006], and other transduction applications. Another space application for cryogenic actuators is in infrared telescopes that may beground-based, airborne, or space telescopes. The common component of each of these telescopes is the infrared solid-state detector that must be cooled to cryogenic temperatures. In addition, infrared space telescopes require cryo-cooling systems to maintain sensitivity, which requires the use of valves. A variety of missions have been proposedusing infrared cameras or detectors including SIRTF/SAFIR, the mid infrared instrument (MIRI) of the James Webb Space Telescope (JWST) [Stockman, 1997]. JWST, previously known as Next Generation Space Telescope (NGST), was designed as a large space infrared telescope to achieve a 1000 times greater sensitivity than any currently existing or planned facilities [Stockman, 1997]. The design requirements include a large primary mirror (6-8 m diameter), orbit at the second Lagrange point (L2), and an operation temperature between 35 and 65 K. Due to the long distance (1.5 million kilometers) between the telescope and the space shuttle, JWST's orbit will be unserviceable, rendering the active optics a necessity. Cryogenic actuators are used to position the mirror segments by image plane wavefront sensing. Occasional refocus is needed every few days after the initial con†guration. Based on the three-mirror anastigmatic design, the telescope has secondary and tertiary mirrors to deliver images that are free of optical aberrations, which could be achieved using adaptive optics consisting of cryogenic deformable mirrors. Cryogenic actuator arrays with large stroke, high force, high resolution and low power consumption become very critical for the development of the deformable mirrors. On the other side, for infrared detection, a cryogenic environment could greatly diminish the noise caused by the Stefan-Boltzmann law, which provides a huge advantage in the sensitivity over those detectors that are not cooled. Cryogenic sensors, actuators, and motors are hence essential for proper operation of these space instruments. The Spitzer Space Telescope [Finley et al., 2004], shown in Figure 7.2, has detectors thatmust be cooled to only about 5° above absolute zero to ensure that the telescopes internal heating does not interfere with its observations of cold cosmic objects. To accomplish this, the telescope has a cryostat of liquid helium that requires low-power cryogenic actuators to open venting valves. Some scienti†c instruments in which cryogenic devices are becoming more commoninclude probes, stages, and scanners of the scanning tunneling microscope (STM) and the atomic force microscope (AFM) for surface science study [Saitoh et al., 2009], shown in Figure 7.3. The precise tip-surface positioning in a cryogenic environment is possible because of very low thermal drift. On the other hand, some special phenomena, for example, charge density wave (CDW), superconductivity, and structural phase transition, are only observable at a cryogenic state. Other commercial and space applications of cryogenic transducers include the transferand transportation of lique†ed gases [Park et al., 2008]. The processes of separating air into its components and the resulting production of liquid oxygen, liquid nitrogen, liquid helium, and liquid argon are some of the primary commercial cryogenic applications. Cryogenic ¤uid devices including valves are needed to control the ¤ow of these liquid gases in various scenarios, for example, liquid oxygen and liquid hydrogen for space shuttle propulsion, liquid nitrogen for food freezing, cooling of chamber systems for high-vacuum state, cooling of infrared detector and medical applications, liquid argon for plasma technologies, etc. In addition to these cryogenic actuator applications, transducer materials have manysensing applications at low temperatures. One typical application is the monitoring of the integrity of structures working in cryogenic surroundings. For instance, pressure vessels in liquid rocket engines can fail due to many causes including corrosion, pitting, stress corrosion cracks, seam weld cracks, and dents due to internal or external impacts [Qing et al., 2008]. The detection of defects and monitoring of their growth are important for ensuring the safety and reliability of advanced space exploration vehicles/ propulsion systems. Also, the sensing of cryogenic liquid level, ¤ow pressure, and velocity is important for many cryogenic ¤uid handling applications [Fisher and Malocha, 2007].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小狼完成签到,获得积分10
2秒前
insissst完成签到,获得积分10
3秒前
Valverde15完成签到,获得积分10
5秒前
李y梅子完成签到,获得积分10
6秒前
木子李发布了新的文献求助10
7秒前
大猫完成签到 ,获得积分10
9秒前
10秒前
耳机单蹦完成签到,获得积分10
10秒前
李y梅子发布了新的文献求助10
12秒前
14秒前
00K发布了新的文献求助10
16秒前
彩色毛巾完成签到 ,获得积分10
17秒前
18秒前
net80yhm发布了新的文献求助10
18秒前
21秒前
彭于晏应助李西瓜采纳,获得10
22秒前
勤劳的飞鸟完成签到,获得积分20
24秒前
24秒前
27秒前
27秒前
吉他平方完成签到,获得积分10
30秒前
30秒前
32秒前
吉他平方发布了新的文献求助10
32秒前
33秒前
33秒前
LHC完成签到,获得积分10
33秒前
桐桐应助水博士采纳,获得10
34秒前
35秒前
黄迪迪发布了新的文献求助10
36秒前
周周完成签到,获得积分10
37秒前
仁爱亦巧发布了新的文献求助10
37秒前
顾矜应助李y梅子采纳,获得10
38秒前
华仔应助Kim采纳,获得10
38秒前
39秒前
明亮的绫发布了新的文献求助10
39秒前
英俊的咖啡豆完成签到 ,获得积分20
41秒前
海川完成签到,获得积分10
41秒前
42秒前
211关闭了211文献求助
44秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346036
求助须知:如何正确求助?哪些是违规求助? 2972863
关于积分的说明 8656466
捐赠科研通 2653230
什么是DOI,文献DOI怎么找? 1453046
科研通“疑难数据库(出版商)”最低求助积分说明 672705
邀请新用户注册赠送积分活动 662595