致潮剂
动力学
水溶液
阴极
离子
冰点降低
冰点
化学
电池(电)
电化学
电解质
化学工程
无机化学
电极
有机化学
热力学
物理化学
物理
工程类
量子力学
功率(物理)
作者
Qiu Zhang,Kexin Xia,Yilin Ma,Yong Lü,Lin Li,Jing Liang,Shulei Chou,Jun Chen
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-07-09
卷期号:6 (8): 2704-2712
被引量:199
标识
DOI:10.1021/acsenergylett.1c01054
摘要
Operating at low temperatures is a great challenge that hinders the practical application of aqueous batteries at subzero temperatures. The frozen electrolyte and the limited capacity of the cathode at low temperatures are the main reasons. Herein, we report synthetic electrolyte/cathode design strategies for low-temperature aqueous Zn batteries. The fundamental correlations between anion chemistries and freezing point depression of water are revealed by multi-perspective characterization. Coupled with the chaotropic anion, CF3SO3–, the 2 M zinc electrolyte features a low freezing point of −34.1 °C and high ionic conductivity of 4.47 mS cm–1 at −30 °C. With the benefits of the low-temperature electrolyte and fast-kinetics cathode, Zn||V2O5 batteries deliver a high specific capacity of 285.0 mAh g–1 at −30 °C with capacity retention of 81.7% after 1000 cycles. This work points out the fundamental understanding of anion chemistries and synthetic design strategies for developing low-temperature aqueous batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI