An empirical evaluation of attention-based multi-head models for improved turbofan engine remaining useful life prediction

计算机科学 水准点(测量) 感知器 人工智能 机器学习 背景(考古学) 网络体系结构 多任务学习 人工神经网络 任务(项目管理) 工程类 古生物学 计算机安全 大地测量学 系统工程 生物 地理
作者
Abiodun Ayodeji,Wenhai Wang,Jianzhong Su,Jianquan Yuan,Xinggao Liu
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2109.01761
摘要

A single unit (head) is the conventional input feature extractor in deep learning architectures trained on multivariate time series signals. The importance of the fixed-dimensional vector representation generated by the single-head network has been demonstrated for industrial machinery condition monitoring and predictive maintenance. However, processing heterogeneous sensor signals with a single-head may result in a model that cannot explicitly account for the diversity in time-varying multivariate inputs. This work extends the conventional single-head deep learning models to a more robust form by developing context-specific heads to independently capture the inherent pattern in each sensor reading. Using the turbofan aircraft engine benchmark dataset (CMAPSS), an extensive experiment is performed to verify the effectiveness and benefits of multi-head multilayer perceptron, recurrent networks, convolution network, the transformer-style stand-alone attention network, and their variants for remaining useful life estimation. Moreover, the effect of different attention mechanisms on the multi-head models is also evaluated. In addition, each architecture's relative advantage and computational overhead are analyzed. Results show that utilizing the attention layer is task-sensitive and model dependent, as it does not provide consistent improvement across the models investigated. The best model is further compared with five state-of-the-art models, and the comparison shows that a relatively simple multi-head architecture performs better than the state-of-the-art models. The results presented in this study demonstrate the importance of multi-head models and attention mechanisms to an improved understanding of the remaining useful life of industrial assets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆烂好爽发布了新的文献求助10
1秒前
4秒前
Hou Pengxiao完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
李荷花完成签到 ,获得积分10
7秒前
勤劳的小牛蛙应助fule采纳,获得10
7秒前
9秒前
Haiser发布了新的文献求助10
9秒前
诚心谷南发布了新的文献求助10
9秒前
飘逸小笼包完成签到,获得积分10
9秒前
10秒前
10秒前
HUJL发布了新的文献求助10
11秒前
新之助完成签到,获得积分10
14秒前
Haiser完成签到,获得积分10
14秒前
柯一一应助攀登采纳,获得10
16秒前
SYLH应助ccc采纳,获得10
16秒前
静jing发布了新的文献求助30
16秒前
777发布了新的文献求助10
17秒前
17秒前
18秒前
风信子完成签到,获得积分10
18秒前
语冰完成签到,获得积分10
19秒前
慕辰发布了新的文献求助30
20秒前
21秒前
李菠萝发布了新的文献求助10
22秒前
爆米花应助yyy采纳,获得10
22秒前
23秒前
23秒前
体贴静竹完成签到 ,获得积分10
25秒前
25秒前
爆米花应助张冰倩采纳,获得10
25秒前
26秒前
柯一一应助qingsyxuan采纳,获得10
27秒前
星辰大海应助李某某采纳,获得10
28秒前
科研狗发布了新的文献求助10
28秒前
histen完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377