An empirical evaluation of attention-based multi-head models for improved turbofan engine remaining useful life prediction

计算机科学 水准点(测量) 感知器 人工智能 机器学习 背景(考古学) 网络体系结构 多任务学习 人工神经网络 任务(项目管理) 工程类 古生物学 生物 系统工程 地理 计算机安全 大地测量学
作者
Abiodun Ayodeji,Wenhai Wang,Jianzhong Su,Jianquan Yuan,Xinggao Liu
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2109.01761
摘要

A single unit (head) is the conventional input feature extractor in deep learning architectures trained on multivariate time series signals. The importance of the fixed-dimensional vector representation generated by the single-head network has been demonstrated for industrial machinery condition monitoring and predictive maintenance. However, processing heterogeneous sensor signals with a single-head may result in a model that cannot explicitly account for the diversity in time-varying multivariate inputs. This work extends the conventional single-head deep learning models to a more robust form by developing context-specific heads to independently capture the inherent pattern in each sensor reading. Using the turbofan aircraft engine benchmark dataset (CMAPSS), an extensive experiment is performed to verify the effectiveness and benefits of multi-head multilayer perceptron, recurrent networks, convolution network, the transformer-style stand-alone attention network, and their variants for remaining useful life estimation. Moreover, the effect of different attention mechanisms on the multi-head models is also evaluated. In addition, each architecture's relative advantage and computational overhead are analyzed. Results show that utilizing the attention layer is task-sensitive and model dependent, as it does not provide consistent improvement across the models investigated. The best model is further compared with five state-of-the-art models, and the comparison shows that a relatively simple multi-head architecture performs better than the state-of-the-art models. The results presented in this study demonstrate the importance of multi-head models and attention mechanisms to an improved understanding of the remaining useful life of industrial assets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侦察兵发布了新的文献求助10
1秒前
JamesPei应助科研小小小白采纳,获得10
1秒前
1秒前
yaqin@9909完成签到,获得积分10
1秒前
嗨JL完成签到,获得积分10
1秒前
帅玉玉发布了新的文献求助10
1秒前
鳗鱼冰薇完成签到 ,获得积分10
3秒前
tanjianxin发布了新的文献求助10
3秒前
4秒前
霸王龙完成签到,获得积分10
4秒前
4秒前
4秒前
细心映寒发布了新的文献求助10
4秒前
哈哈发布了新的文献求助10
5秒前
5秒前
安静的雨完成签到,获得积分10
5秒前
6秒前
6秒前
liu完成签到,获得积分10
6秒前
6秒前
神麒小雪完成签到,获得积分10
6秒前
苹果酸奶发布了新的文献求助10
6秒前
7秒前
粥粥完成签到 ,获得积分10
7秒前
小离发布了新的文献求助30
8秒前
9秒前
nk完成签到 ,获得积分10
9秒前
kkk完成签到 ,获得积分10
9秒前
韭菜发布了新的文献求助10
9秒前
KSGGS发布了新的文献求助30
10秒前
李爱国应助tanjianxin采纳,获得10
10秒前
10秒前
10秒前
柚子发布了新的文献求助10
11秒前
11秒前
11秒前
SciGPT应助小可采纳,获得10
11秒前
12秒前
12秒前
Akim应助若狂采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759