An empirical evaluation of attention-based multi-head models for improved turbofan engine remaining useful life prediction

计算机科学 水准点(测量) 感知器 人工智能 机器学习 背景(考古学) 网络体系结构 多任务学习 人工神经网络 任务(项目管理) 工程类 古生物学 计算机安全 大地测量学 系统工程 生物 地理
作者
Abiodun Ayodeji,Wenhai Wang,Jianzhong Su,Jianquan Yuan,Xinggao Liu
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2109.01761
摘要

A single unit (head) is the conventional input feature extractor in deep learning architectures trained on multivariate time series signals. The importance of the fixed-dimensional vector representation generated by the single-head network has been demonstrated for industrial machinery condition monitoring and predictive maintenance. However, processing heterogeneous sensor signals with a single-head may result in a model that cannot explicitly account for the diversity in time-varying multivariate inputs. This work extends the conventional single-head deep learning models to a more robust form by developing context-specific heads to independently capture the inherent pattern in each sensor reading. Using the turbofan aircraft engine benchmark dataset (CMAPSS), an extensive experiment is performed to verify the effectiveness and benefits of multi-head multilayer perceptron, recurrent networks, convolution network, the transformer-style stand-alone attention network, and their variants for remaining useful life estimation. Moreover, the effect of different attention mechanisms on the multi-head models is also evaluated. In addition, each architecture's relative advantage and computational overhead are analyzed. Results show that utilizing the attention layer is task-sensitive and model dependent, as it does not provide consistent improvement across the models investigated. The best model is further compared with five state-of-the-art models, and the comparison shows that a relatively simple multi-head architecture performs better than the state-of-the-art models. The results presented in this study demonstrate the importance of multi-head models and attention mechanisms to an improved understanding of the remaining useful life of industrial assets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JasonSun完成签到,获得积分10
1秒前
2秒前
chillin发布了新的文献求助100
3秒前
ddj完成签到 ,获得积分10
3秒前
4秒前
4秒前
巴拉巴拉发布了新的文献求助10
4秒前
5秒前
yyz发布了新的文献求助10
6秒前
7秒前
7秒前
冰晨完成签到,获得积分10
9秒前
老薛发布了新的文献求助10
9秒前
nczpf2010发布了新的文献求助10
10秒前
dudu10000发布了新的文献求助10
11秒前
cjx完成签到,获得积分10
12秒前
wwz应助科研通管家采纳,获得10
13秒前
star应助科研通管家采纳,获得30
13秒前
盒子应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得30
14秒前
情怀应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
14秒前
pluto应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
14秒前
美好乐松应助科研通管家采纳,获得10
14秒前
15秒前
ljc完成签到 ,获得积分10
16秒前
科研狗完成签到,获得积分10
16秒前
顺顺尼发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023