Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R

计算机科学 样本量测定 样品(材料) 混合模型 广义线性混合模型 统计能力 线性模型 功率(物理) 可靠性(半导体) 统计 机器学习 数学 色谱法 量子力学 物理 化学
作者
Levi Kumle,Melissa L.‐H. Võ,Dejan Draschkow
出处
期刊:Behavior Research Methods [Springer Nature]
卷期号:53 (6): 2528-2543 被引量:268
标识
DOI:10.3758/s13428-021-01546-0
摘要

Abstract Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases: first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects models are outlined as inferential procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽帅哥发布了新的文献求助10
刚刚
刚刚
JamesPei应助水心采纳,获得10
2秒前
xlarrow发布了新的文献求助30
6秒前
ljr65完成签到 ,获得积分10
8秒前
英姑应助行路难采纳,获得10
9秒前
科研通AI2S应助lu采纳,获得10
9秒前
鄢亮完成签到,获得积分10
10秒前
djx123发布了新的文献求助10
11秒前
11秒前
14秒前
浮游应助秀丽焦采纳,获得30
17秒前
科研通AI6应助彩虹屁采纳,获得10
19秒前
科研通AI6应助甜甜的静柏采纳,获得10
19秒前
水心发布了新的文献求助10
19秒前
20秒前
djx123完成签到,获得积分10
21秒前
ghq7724完成签到,获得积分20
22秒前
25秒前
25秒前
思源应助fanzi采纳,获得10
26秒前
zhangyimg完成签到,获得积分10
26秒前
天天快乐应助糊涂的墨镜采纳,获得10
28秒前
30秒前
Tourist应助kaiee采纳,获得10
30秒前
曲幻梅完成签到,获得积分10
30秒前
小麦发布了新的文献求助10
30秒前
科研通AI6应助wzg666采纳,获得30
33秒前
33秒前
33秒前
35秒前
36秒前
所所应助水心采纳,获得10
37秒前
38秒前
冷静幻枫发布了新的文献求助10
39秒前
jason0023发布了新的文献求助10
40秒前
waubycid发布了新的文献求助10
40秒前
41秒前
星辰大海应助开心的雁芙采纳,获得10
41秒前
111完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592