Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R

计算机科学 样本量测定 样品(材料) 混合模型 广义线性混合模型 统计能力 线性模型 功率(物理) 可靠性(半导体) 统计 机器学习 数学 色谱法 量子力学 物理 化学
作者
Levi Kumle,Melissa L.‐H. Võ,Dejan Draschkow
出处
期刊:Behavior Research Methods [Springer Science+Business Media]
卷期号:53 (6): 2528-2543 被引量:268
标识
DOI:10.3758/s13428-021-01546-0
摘要

Abstract Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases: first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects models are outlined as inferential procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的怜烟应助WX采纳,获得30
刚刚
KELE发布了新的文献求助20
1秒前
1秒前
1秒前
Xiaoqiang完成签到,获得积分10
1秒前
ty发布了新的文献求助10
3秒前
乘乘完成签到 ,获得积分10
3秒前
悦耳的初瑶完成签到 ,获得积分10
4秒前
4秒前
Profeto应助zheng-homes采纳,获得10
5秒前
烟花应助ww采纳,获得10
6秒前
scq发布了新的文献求助10
7秒前
zianlai发布了新的文献求助10
8秒前
8秒前
11秒前
12秒前
12秒前
在水一方应助盛夏如花采纳,获得10
12秒前
幸运章鱼哥关注了科研通微信公众号
13秒前
14秒前
15秒前
hailan完成签到,获得积分10
15秒前
16秒前
Mure发布了新的文献求助10
17秒前
17秒前
book发布了新的文献求助30
19秒前
April完成签到,获得积分10
19秒前
周LL发布了新的文献求助10
19秒前
宝贝发布了新的文献求助10
19秒前
安平发布了新的文献求助10
19秒前
20秒前
一屿完成签到,获得积分10
20秒前
浮游应助WX采纳,获得30
20秒前
我是老大应助富有的云龙采纳,获得10
20秒前
bubble嘞发布了新的文献求助10
22秒前
Zx_1993应助JAN采纳,获得10
23秒前
24秒前
24秒前
25秒前
科研通AI6应助popo采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207406
求助须知:如何正确求助?哪些是违规求助? 4385353
关于积分的说明 13656706
捐赠科研通 4243935
什么是DOI,文献DOI怎么找? 2328474
邀请新用户注册赠送积分活动 1326166
关于科研通互助平台的介绍 1278375