Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R

计算机科学 样本量测定 样品(材料) 混合模型 广义线性混合模型 统计能力 线性模型 功率(物理) 可靠性(半导体) 统计 机器学习 数学 化学 物理 色谱法 量子力学
作者
Levi Kumle,Melissa L.‐H. Võ,Dejan Draschkow
出处
期刊:Behavior Research Methods [Springer Nature]
卷期号:53 (6): 2528-2543 被引量:268
标识
DOI:10.3758/s13428-021-01546-0
摘要

Abstract Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases: first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects models are outlined as inferential procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彩色诗云发布了新的文献求助10
1秒前
2秒前
悦007完成签到,获得积分10
3秒前
4秒前
田様应助清脆南蕾采纳,获得10
5秒前
Criminology34应助无情的宛儿采纳,获得10
5秒前
无花果应助无情的宛儿采纳,获得10
5秒前
悦007发布了新的文献求助10
7秒前
7秒前
七之完成签到,获得积分10
7秒前
7秒前
7秒前
stefdee发布了新的文献求助10
8秒前
JamesPei应助彩色诗云采纳,获得10
9秒前
duanyimeng发布了新的文献求助10
10秒前
10秒前
Hello应助南兮采纳,获得10
11秒前
12秒前
heima发布了新的文献求助10
12秒前
junglebag完成签到,获得积分20
13秒前
无花果应助唯我文乃采纳,获得10
13秒前
充电宝应助风格采纳,获得30
14秒前
随行完成签到 ,获得积分10
15秒前
春色未软旧苔痕完成签到,获得积分10
16秒前
18秒前
坚强的山芙完成签到,获得积分10
19秒前
CodeCraft应助Gtingting采纳,获得10
20秒前
20秒前
21秒前
熊猫文文发布了新的文献求助10
23秒前
蒋蒋完成签到,获得积分10
24秒前
情怀应助dmeng采纳,获得10
24秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
echo发布了新的文献求助20
27秒前
汉堡包应助你好采纳,获得10
28秒前
28秒前
28秒前
cfplrbs发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086