Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing

计算机科学 卷积神经网络 人工智能 预处理器 计算机视觉 特征提取 人工神经网络 涡扇发动机 模式识别(心理学) 图像处理 图像(数学) 工程类 汽车工程
作者
Yong‐Ho Kim,Jung‐Ryul Lee
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (5-6): 2020-2039 被引量:21
标识
DOI:10.1177/1475921719830328
摘要

A typical aircraft engine consists of fans, compressors, turbines, and so on, and each is made of multiple layers of blades. Discovering the site of damages among the large number of blades during aircraft engine maintenance is quite important. However, it is impossible to look directly into the engine unless it is disassembled. For this reason, optical equipment such as a videoscope is used to visually inspect the blades of an engine through inspection holes. The videoscope inspection method has some obvious drawbacks such as the long-time attention on microscopic video feed and high labor intensity. In this research, we developed a damage recognition algorithm using convolutional neural networks and some image-processing techniques related to feature point extraction and matching in order to improve the videoscope inspection method. The image-processing techniques were mainly used for the preprocessing of the videoscope images, from which a suspected damaged region is selected after the preprocessing. The suspected region is finally classified as damaged or normal by the pre-trained convolutional neural networks. We trained the convolutional neural networks 2000 times by using data from 380 images and calculated the classification accuracy using data from 40 images. After repeating the above procedure 50 times with the data randomly divided into training and test groups, an average classification accuracy of 95.2% for each image and a damage detectability of 100% in video were obtained. For verification of the proposed approach, the convolutional neural network part was compared with the traditional neural network, and the preprocessing was compared with the region proposal network of the faster region–based convolutional neural networks. In addition, we developed a platform based on the developed damage recognition algorithm and conducted field tests with a videoscope for a real engine. The damage detection AI platform was successfully applied to the inspection video probed in an in-service engine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzwwwkkk完成签到,获得积分10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
3秒前
不配.应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
乐乐应助vincen91采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
丘比特应助哈哈采纳,获得10
5秒前
薄荷完成签到,获得积分10
5秒前
乐观的颦发布了新的文献求助10
5秒前
Lemon发布了新的文献求助10
5秒前
黑宝坨完成签到,获得积分10
6秒前
碧蓝紫雪发布了新的文献求助10
6秒前
歪哔巴布完成签到,获得积分20
7秒前
han发布了新的文献求助10
8秒前
8秒前
8秒前
渡劫发布了新的文献求助20
10秒前
10秒前
Banff发布了新的文献求助10
11秒前
我要毕业完成签到,获得积分20
11秒前
超级寒香完成签到,获得积分20
12秒前
sokach发布了新的文献求助10
12秒前
无名花生发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
权箴发布了新的文献求助10
16秒前
wnll发布了新的文献求助10
16秒前
田様应助zyf采纳,获得30
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706