Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing

计算机科学 卷积神经网络 人工智能 预处理器 计算机视觉 特征提取 人工神经网络 涡扇发动机 模式识别(心理学) 图像处理 图像(数学) 工程类 汽车工程
作者
Yongho Kim,Jung‐Ryul Lee
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:18 (5-6): 2020-2039 被引量:30
标识
DOI:10.1177/1475921719830328
摘要

A typical aircraft engine consists of fans, compressors, turbines, and so on, and each is made of multiple layers of blades. Discovering the site of damages among the large number of blades during aircraft engine maintenance is quite important. However, it is impossible to look directly into the engine unless it is disassembled. For this reason, optical equipment such as a videoscope is used to visually inspect the blades of an engine through inspection holes. The videoscope inspection method has some obvious drawbacks such as the long-time attention on microscopic video feed and high labor intensity. In this research, we developed a damage recognition algorithm using convolutional neural networks and some image-processing techniques related to feature point extraction and matching in order to improve the videoscope inspection method. The image-processing techniques were mainly used for the preprocessing of the videoscope images, from which a suspected damaged region is selected after the preprocessing. The suspected region is finally classified as damaged or normal by the pre-trained convolutional neural networks. We trained the convolutional neural networks 2000 times by using data from 380 images and calculated the classification accuracy using data from 40 images. After repeating the above procedure 50 times with the data randomly divided into training and test groups, an average classification accuracy of 95.2% for each image and a damage detectability of 100% in video were obtained. For verification of the proposed approach, the convolutional neural network part was compared with the traditional neural network, and the preprocessing was compared with the region proposal network of the faster region–based convolutional neural networks. In addition, we developed a platform based on the developed damage recognition algorithm and conducted field tests with a videoscope for a real engine. The damage detection AI platform was successfully applied to the inspection video probed in an in-service engine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵梦露发布了新的文献求助10
1秒前
3秒前
4秒前
GL发布了新的文献求助10
4秒前
乐乐应助如意枫叶采纳,获得10
4秒前
5秒前
史念薇发布了新的文献求助10
5秒前
xixi完成签到 ,获得积分10
5秒前
7秒前
青野发布了新的文献求助10
9秒前
12秒前
13秒前
高贵梦露完成签到,获得积分10
13秒前
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
如意枫叶发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
22秒前
23秒前
24秒前
赘婿应助GL采纳,获得10
24秒前
25秒前
25秒前
Archer宇完成签到,获得积分10
25秒前
狸花小喵发布了新的文献求助10
27秒前
科研废物完成签到 ,获得积分10
27秒前
28秒前
29秒前
30秒前
31秒前
33秒前
34秒前
潇湘雪月发布了新的文献求助10
35秒前
35秒前
36秒前
ding应助咩咩羊采纳,获得10
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136