Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing

计算机科学 卷积神经网络 人工智能 预处理器 计算机视觉 特征提取 人工神经网络 涡扇发动机 模式识别(心理学) 图像处理 图像(数学) 工程类 汽车工程
作者
Yongho Kim,Jung‐Ryul Lee
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:18 (5-6): 2020-2039 被引量:30
标识
DOI:10.1177/1475921719830328
摘要

A typical aircraft engine consists of fans, compressors, turbines, and so on, and each is made of multiple layers of blades. Discovering the site of damages among the large number of blades during aircraft engine maintenance is quite important. However, it is impossible to look directly into the engine unless it is disassembled. For this reason, optical equipment such as a videoscope is used to visually inspect the blades of an engine through inspection holes. The videoscope inspection method has some obvious drawbacks such as the long-time attention on microscopic video feed and high labor intensity. In this research, we developed a damage recognition algorithm using convolutional neural networks and some image-processing techniques related to feature point extraction and matching in order to improve the videoscope inspection method. The image-processing techniques were mainly used for the preprocessing of the videoscope images, from which a suspected damaged region is selected after the preprocessing. The suspected region is finally classified as damaged or normal by the pre-trained convolutional neural networks. We trained the convolutional neural networks 2000 times by using data from 380 images and calculated the classification accuracy using data from 40 images. After repeating the above procedure 50 times with the data randomly divided into training and test groups, an average classification accuracy of 95.2% for each image and a damage detectability of 100% in video were obtained. For verification of the proposed approach, the convolutional neural network part was compared with the traditional neural network, and the preprocessing was compared with the region proposal network of the faster region–based convolutional neural networks. In addition, we developed a platform based on the developed damage recognition algorithm and conducted field tests with a videoscope for a real engine. The damage detection AI platform was successfully applied to the inspection video probed in an in-service engine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Litoivda完成签到 ,获得积分10
刚刚
暮雨完成签到,获得积分10
1秒前
DOGDAD完成签到,获得积分10
3秒前
英俊的铭应助温柔翰采纳,获得10
3秒前
英姑应助薛建伟采纳,获得10
3秒前
如云完成签到,获得积分20
4秒前
你说的完成签到 ,获得积分10
4秒前
Jasper应助大脸猫4811采纳,获得10
5秒前
hearz完成签到,获得积分10
6秒前
7秒前
P2JY完成签到,获得积分10
7秒前
leiiiiiiii完成签到,获得积分10
7秒前
Bake完成签到 ,获得积分10
9秒前
10秒前
yuan完成签到,获得积分10
10秒前
论文多多完成签到,获得积分10
11秒前
11秒前
Acid完成签到 ,获得积分10
11秒前
1111111111111发布了新的文献求助10
12秒前
linlinyilulvdeng完成签到,获得积分10
12秒前
斯文败类应助历史雨采纳,获得10
13秒前
FashionBoy应助吃个大笼包采纳,获得10
15秒前
海阔天空发布了新的文献求助10
16秒前
薛建伟发布了新的文献求助10
17秒前
高高代珊发布了新的文献求助10
18秒前
害羞的墨镜完成签到,获得积分10
18秒前
lalala发布了新的文献求助10
18秒前
19秒前
guojingjing完成签到,获得积分10
19秒前
打打应助科多兽骑士采纳,获得10
20秒前
angela完成签到,获得积分10
20秒前
20秒前
潇洒的茗茗完成签到 ,获得积分10
22秒前
脂肪小米粥完成签到,获得积分10
23秒前
小幸运完成签到,获得积分10
26秒前
爱吃冻梨完成签到,获得积分10
26秒前
xiang发布了新的文献求助10
26秒前
陈冲冲完成签到,获得积分10
27秒前
changfox完成签到,获得积分10
27秒前
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066