已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing

计算机科学 卷积神经网络 人工智能 预处理器 计算机视觉 特征提取 人工神经网络 涡扇发动机 模式识别(心理学) 图像处理 图像(数学) 工程类 汽车工程
作者
Yongho Kim,Jung‐Ryul Lee
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (5-6): 2020-2039 被引量:30
标识
DOI:10.1177/1475921719830328
摘要

A typical aircraft engine consists of fans, compressors, turbines, and so on, and each is made of multiple layers of blades. Discovering the site of damages among the large number of blades during aircraft engine maintenance is quite important. However, it is impossible to look directly into the engine unless it is disassembled. For this reason, optical equipment such as a videoscope is used to visually inspect the blades of an engine through inspection holes. The videoscope inspection method has some obvious drawbacks such as the long-time attention on microscopic video feed and high labor intensity. In this research, we developed a damage recognition algorithm using convolutional neural networks and some image-processing techniques related to feature point extraction and matching in order to improve the videoscope inspection method. The image-processing techniques were mainly used for the preprocessing of the videoscope images, from which a suspected damaged region is selected after the preprocessing. The suspected region is finally classified as damaged or normal by the pre-trained convolutional neural networks. We trained the convolutional neural networks 2000 times by using data from 380 images and calculated the classification accuracy using data from 40 images. After repeating the above procedure 50 times with the data randomly divided into training and test groups, an average classification accuracy of 95.2% for each image and a damage detectability of 100% in video were obtained. For verification of the proposed approach, the convolutional neural network part was compared with the traditional neural network, and the preprocessing was compared with the region proposal network of the faster region–based convolutional neural networks. In addition, we developed a platform based on the developed damage recognition algorithm and conducted field tests with a videoscope for a real engine. The damage detection AI platform was successfully applied to the inspection video probed in an in-service engine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助科研通管家采纳,获得20
刚刚
wanci应助科研通管家采纳,获得10
刚刚
呼延水云完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
9秒前
张文博完成签到,获得积分10
10秒前
畅快自行车完成签到,获得积分10
10秒前
五上村雨发布了新的文献求助10
12秒前
13秒前
嘉子完成签到 ,获得积分10
16秒前
开心初阳发布了新的文献求助10
18秒前
小研大究完成签到,获得积分10
19秒前
拼搏的寒凝完成签到 ,获得积分10
19秒前
U87完成签到,获得积分10
21秒前
23秒前
怂怂鼠完成签到,获得积分10
25秒前
闲鱼电脑完成签到,获得积分10
28秒前
Gun完成签到,获得积分10
31秒前
32秒前
贪玩的谷芹完成签到 ,获得积分0
32秒前
短腿小柯基完成签到 ,获得积分10
34秒前
春鸮鸟完成签到 ,获得积分10
36秒前
钮祜禄萱完成签到 ,获得积分10
37秒前
开心初阳完成签到 ,获得积分10
38秒前
我是老大应助weiwei采纳,获得30
40秒前
开心的梦柏完成签到 ,获得积分10
43秒前
AteeqBaloch完成签到,获得积分10
44秒前
45秒前
45秒前
qinglongtsmc发布了新的文献求助20
49秒前
50秒前
50秒前
50秒前
yaoyaoyu完成签到 ,获得积分10
51秒前
烟花应助蓝色逍遥鱼采纳,获得10
52秒前
zy完成签到 ,获得积分10
52秒前
李健的小迷弟应助阿宇采纳,获得10
53秒前
54秒前
54秒前
fantianhui完成签到 ,获得积分10
54秒前
精明玲完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606459
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866330
捐赠科研通 4705808
什么是DOI,文献DOI怎么找? 2542698
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276