Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing

计算机科学 卷积神经网络 人工智能 预处理器 计算机视觉 特征提取 人工神经网络 涡扇发动机 模式识别(心理学) 图像处理 图像(数学) 工程类 汽车工程
作者
Yongho Kim,Jung‐Ryul Lee
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (5-6): 2020-2039 被引量:30
标识
DOI:10.1177/1475921719830328
摘要

A typical aircraft engine consists of fans, compressors, turbines, and so on, and each is made of multiple layers of blades. Discovering the site of damages among the large number of blades during aircraft engine maintenance is quite important. However, it is impossible to look directly into the engine unless it is disassembled. For this reason, optical equipment such as a videoscope is used to visually inspect the blades of an engine through inspection holes. The videoscope inspection method has some obvious drawbacks such as the long-time attention on microscopic video feed and high labor intensity. In this research, we developed a damage recognition algorithm using convolutional neural networks and some image-processing techniques related to feature point extraction and matching in order to improve the videoscope inspection method. The image-processing techniques were mainly used for the preprocessing of the videoscope images, from which a suspected damaged region is selected after the preprocessing. The suspected region is finally classified as damaged or normal by the pre-trained convolutional neural networks. We trained the convolutional neural networks 2000 times by using data from 380 images and calculated the classification accuracy using data from 40 images. After repeating the above procedure 50 times with the data randomly divided into training and test groups, an average classification accuracy of 95.2% for each image and a damage detectability of 100% in video were obtained. For verification of the proposed approach, the convolutional neural network part was compared with the traditional neural network, and the preprocessing was compared with the region proposal network of the faster region–based convolutional neural networks. In addition, we developed a platform based on the developed damage recognition algorithm and conducted field tests with a videoscope for a real engine. The damage detection AI platform was successfully applied to the inspection video probed in an in-service engine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小龙完成签到 ,获得积分10
刚刚
罗梦完成签到,获得积分20
1秒前
LBX发布了新的文献求助20
1秒前
坦率灵槐发布了新的文献求助10
1秒前
Ronalsen完成签到 ,获得积分10
1秒前
2秒前
专一的铃铛完成签到,获得积分10
2秒前
怡然如凡完成签到,获得积分10
2秒前
wlscj应助小余同学采纳,获得20
3秒前
费飞扬完成签到,获得积分10
3秒前
桐桐应助冷酷的水壶采纳,获得10
3秒前
柔弱的幻灵完成签到,获得积分10
3秒前
zwangxia完成签到,获得积分10
3秒前
zlf完成签到,获得积分10
4秒前
momo发布了新的文献求助10
5秒前
今后应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
神奇女侠完成签到,获得积分10
7秒前
桐桐应助科研通管家采纳,获得30
7秒前
情怀应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
Orange应助科研通管家采纳,获得10
8秒前
圆锥香蕉应助科研通管家采纳,获得20
8秒前
8秒前
怡然凝云发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
开朗的寻真完成签到,获得积分10
9秒前
10秒前
Tourist应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
唠叨的大门完成签到,获得积分20
10秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572