非线性系统
人工神经网络
离散化
偏微分方程
应用数学
数学
计算机科学
数学分析
人工智能
物理
量子力学
作者
Yuwei Fan,Lin Lin,Lexing Ying,Leonardo Zepeda-Núñez
出处
期刊:Multiscale Modeling & Simulation
[Society for Industrial and Applied Mathematics]
日期:2019-01-01
卷期号:17 (4): 1189-1213
被引量:36
摘要
In this work we introduce a new multiscale artificial neural network based on the structure of $\mathcal{H}$-matrices. This network generalizes the latter to the nonlinear case by introducing a local deep neural network at each spatial scale. Numerical results indicate that the network is able to efficiently approximate discrete nonlinear maps obtained from discretized nonlinear partial differential equations, such as those arising from nonlinear Schrödinger equations and the Kohn--Sham density functional theory.
科研通智能强力驱动
Strongly Powered by AbleSci AI