氧化应激
活力测定
丙二醛
超氧化物歧化酶
细胞凋亡
化学
肿瘤坏死因子α
谷胱甘肽过氧化物酶
糖尿病性视网膜病变
内分泌学
内科学
药理学
医学
生物化学
糖尿病
作者
Wenjun Wang,Shang Li,Meixia Song
标识
DOI:10.1080/10799893.2021.1883061
摘要
Diabetic retinopathy is one of the major diabetic complications and remains the most common cause of adult blindness among patients with diabetes mellitus. Polygonatum sibiricum polysaccharides (PSP) are a group important component of Polygonatum sibiricum (PS) with anti-diabetic activity. However, the effect and underlying mechanism of PSP on diabetic retinopathy remains unclear. We used high glucose (HG)-stimulated ARPE-19 cells to establish in vitro diabetic retinopathy model. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed to evaluate cell viability of ARPE-19 cells. The changes in the ROS production, malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were detected to indicate oxidative stress. The secretion levels of tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were detected by ELISA. The protein levels of TNF-α, IL-8, bcl-2, bax, nuclear Nrf2, and anti-hemeoxygenase-1 (HO-1) were detected by western blot analysis. Our results showed that HG treatment caused a significant reduction in cell viability of ARPE-19 cells. PSP treatment improved the reduced cell viability of ARPE-19 cells. PSP also attenuated HG-induced oxidative stress with decreased ROS production and MDA content, as well as increased the activities of SOD and GPx. In addition, HG significantly increased bax expression and caspase-3 activity, and decreased bcl-2 expression. However, these changes were mitigated by PSP treatment. Furthermore, PSP markedly induced the activation of Nrf2/HO-1 pathway in HG-induced ARPE-19 cells. Knockdown of Nrf2 reversed the protective effects of PSP on HG-induced ARPE-19 cells. Taken together, these findings indicated that PSP protects ARPE-19 cells from HG-induced oxidative stress, inflammation, and cell apoptosis through regulation of Nrf2/HO-1 signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI