超级电容器
储能
电解质
材料科学
功率密度
离子液体
碳纤维
纳米技术
比能量
电极
功率(物理)
电容
复合材料
化学
复合数
有机化学
量子力学
物理
物理化学
催化作用
作者
Ranjith Thangavel,Aravindaraj G. Kannan,Rubha Ponraj,T. Vigneysh,Dong‐Won Kim,Yun‐Sung Lee
标识
DOI:10.1016/j.jpowsour.2018.02.037
摘要
Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg−1 (25 °C), and 177 Wh kg−1 (60 °C) – based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg−1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI