雷亚克夫
分子动力学
纳米颗粒
力场(虚构)
熔点
材料科学
星团(航天器)
粒径
化学物理
熔化温度
热力学
纳米技术
计算化学
化学
物理化学
复合材料
原子间势
物理
量子力学
程序设计语言
计算机科学
作者
Junpeng Liu,Mengjun Wang,Pingan Liu
标识
DOI:10.1088/2053-1591/aac653
摘要
Molecular dynamics simulations were performed to study thermal properties and melting points of Al nanoparticles by using a reactive force field under canonical (NVT) ensembles. Al nanoparticles (particle size 2–4 nm) were considered in simulations. A combination of structural and thermodynamic parameters such as the Lindemann index, heat capacities, potential energy and radial-distribution functions was employed to decide melting points. We used annealing technique to obtain the initial Al nanoparticle model. Comparison was made between ReaxFF results and other simulation results. We found that ReaxFF force field is reasonable to describe Al cluster melting behavior. The linear relationship between particle size and melting points was found. After validating the ReaxFF force field, more attention was paid on thermal properties of Al nanoparticles with different defect concentrations. 4 nm Al nanoparticles with different defect concentrations (5%–20%) were considered in this paper. Our results revealed that: the melting points are irrelevant with defect concentration at a certain particle size. The extra storage energy of Al nanoparticles is proportional to nanoparticles' defect concentration, when defect concentration is 5%–15%. While the particle with 20% defect concentration is similar to the cluster with 10% defect concentration. After melting, the extra energy of all nanoparticles decreases sharply, and the extra storage energy is nearly zero at 600 K. The centro-symmetry parameter analysis shows structure evolution of different models during melting processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI