Empirical mode decomposition-refined composite multiscale dispersion entropy analysis and its application to geophysical well log data

叠加原理 突出 希尔伯特-黄变换 理论(学习稳定性) 非线性系统 熵(时间箭头) 地质学 色散(光学) 模式(计算机接口) 计算机科学 数据挖掘 统计物理学 数学 统计 人工智能 机器学习 物理 数学分析 白噪声 量子力学 光学 操作系统
作者
Xinyuan Ji,Hongliang Wang,Yuntian Ge,Jintong Liang,Xiaolong Xu
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:208: 109495-109495 被引量:8
标识
DOI:10.1016/j.petrol.2021.109495
摘要

Oil and gas exploration activities often face great challenges due to the nonlinear behavior of the reservoir's physical properties, which is commonly defined as “heterogeneity”. Currently, well log data analysis techniques are a novel approach to unravel such nonlinear behavior, because well log data incorporates considerable geological information that determines reservoir property. However, the current complexity analysis techniques face two challenges: 1) the spatiotemporal multiscale nature of complex geological systems and 2) the superposition of the trends in the geophysical well log data on the analysis results. To fill the research gap, we propose an empirical mode decomposition-refined composite multiscale dispersion entropy analysis (EMD-RCMDEA) to eradicate trends and obtain the complexity results with spatiotemporal characteristics. The proposed method produces more accurate results, and its effectiveness, stability, and efficiency are also verified by the simulation signals and the gamma-ray (GR) well log signals. Compared to previous refined composite multiscale entropy analysis (RCMSEA), the EMD-RCMDEA enhances the stability by 69.3% and efficiency by 53.5%. Additionally, using the GR well log data for reservoirs, this method is also applied to explore the heterogeneity of strata with diverse depositional environments and different composite patterns and acquire the following results. 1) The EMD-RCMDEA values of the GR well log data are positively correlated with the heterogeneity of the strata. 2) The reservoir developed in a delta-front depositional environment has the strongest heterogeneity. 3) The heterogeneity of the composite patterns is much stronger than that of the single heterogeneity patterns. 4) Among the heterogeneities of the composite patterns, the pattern consisting of different facies is stronger than that for single facies. • A novel heterogeneity evaluation method is proposed based on EMD-RCMDEA. • New metrics for evaluating the stability of the multiscale entropy method are proposed. • The EMD-RCMDEA eliminates the drawback of multiscale entropy methods. • Trends superimposed in signals affect complexity analysis results. • The EMD-RCMDEA values of GR well log data positively correlate with reservoir heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧汉堡完成签到 ,获得积分10
2秒前
2秒前
282387287完成签到,获得积分10
2秒前
2秒前
叶95完成签到 ,获得积分10
3秒前
DoctorHao发布了新的文献求助10
5秒前
无花果应助wade2016采纳,获得10
6秒前
粥游天下发布了新的文献求助10
6秒前
烟花应助碧蓝的老鼠采纳,获得10
6秒前
湛刘佳发布了新的文献求助10
7秒前
7秒前
小蘑菇应助刻苦的煎蛋采纳,获得10
8秒前
大个应助狂奔的酸笋采纳,获得10
8秒前
东方应助xiaojian_291采纳,获得50
9秒前
科研通AI5应助unique采纳,获得10
10秒前
10秒前
DoctorHao完成签到,获得积分10
11秒前
11秒前
hakunamatata完成签到,获得积分10
11秒前
kk发布了新的文献求助10
13秒前
14秒前
kai_完成签到,获得积分10
15秒前
17秒前
17秒前
艾登登发布了新的文献求助10
17秒前
Lighten完成签到 ,获得积分10
18秒前
kk完成签到,获得积分10
22秒前
高兴的海亦完成签到,获得积分10
23秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
24秒前
unique发布了新的文献求助10
26秒前
严冰蝶完成签到 ,获得积分10
26秒前
30秒前
小孙失策了完成签到,获得积分10
30秒前
30秒前
Meng完成签到,获得积分10
32秒前
思源应助12采纳,获得10
32秒前
33秒前
Time发布了新的文献求助10
34秒前
科研通AI5应助忧郁小刺猬采纳,获得10
35秒前
可盐够发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783