Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: influence of features number on logistic regression model performance

医学 无线电技术 特征选择 神经组阅片室 放射科 介入放射学 接收机工作特性 特征(语言学) 多发性骨髓瘤 逻辑回归 核医学 内科学 人工智能 神经学 计算机科学 语言学 哲学 精神科
作者
Jianfang Liu,Wei Guo,Piaoe Zeng,Yayuan Geng,Yan Liu,Hanqiang Ouyang,Ning Lang,Huishu Yuan
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (1): 572-581 被引量:21
标识
DOI:10.1007/s00330-021-08150-y
摘要

This study aimed to use the most frequent features to establish a vertebral MRI-based radiomics model that could differentiate multiple myeloma (MM) from metastases and compare the model performance with different features number. We retrospectively analyzed conventional MRI (T1WI and fat-suppression T2WI) of 103 MM patients and 138 patients with metastases. The feature selection process included four steps. The first three steps defined as conventional feature selection (CFS), carried out 50 times (ten times with 5-fold cross-validation), included variance threshold, SelectKBest, and least absolute shrinkage and selection operator. The most frequent fixed features were selected for modeling during the last step. The number of events per independent variable (EPV) is the number of patients in a smaller subgroup divided by the number of radiomics features considered in developing the prediction model. The EPV values considered were 5, 10, 15, and 20. Therefore, we constructed four models using the top 16, 8, 6, and 4 most frequent features, respectively. The models constructed with features selected by CFS were also compared. The AUCs of 20EPV-Model, 15EPV-Model, and CSF-Model (AUC = 0.71, 0.81, and 0.78) were poor than 10EPV-Model (AUC = 0.84, p < 0.001). The AUC of 10EPV-Model was comparable with 5EPV-Model (AUC = 0.85, p = 0.480). The radiomics model constructed with an appropriate small number of the most frequent features could well distinguish metastases from MM based on conventional vertebral MRI. Based on our results, we recommend following the 10 EPV as the rule of thumb for feature selection. • The developed radiomics model could distinguish metastases from multiple myeloma based on conventional vertebral MRI. • An accurate model based on just a handful of the most frequent features could be constructed by utilizing multiple feature reduction techniques. • An event per independent variable value of 10 is recommended as a rule of thumb for modeling feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦谦姜完成签到,获得积分10
刚刚
1秒前
JINGZHANG发布了新的文献求助10
1秒前
1秒前
归海天与应助糊弄学专家采纳,获得10
1秒前
风中的青完成签到,获得积分10
2秒前
2秒前
2秒前
duxinyue关注了科研通微信公众号
3秒前
超级宇宙二踢脚关注了科研通微信公众号
3秒前
4秒前
4秒前
5秒前
务实盼海发布了新的文献求助10
5秒前
徐徐徐徐发布了新的文献求助10
6秒前
星晴遇见花海完成签到,获得积分10
6秒前
乐乐应助Rrr采纳,获得10
7秒前
难过鸿涛应助srt采纳,获得10
8秒前
9秒前
卡卡发布了新的文献求助10
9秒前
9秒前
11秒前
Jasper应助刘芸芸采纳,获得10
12秒前
m彬m彬完成签到 ,获得积分10
12秒前
13秒前
自信鑫鹏完成签到,获得积分10
13秒前
HYH完成签到,获得积分10
13秒前
Harish完成签到,获得积分10
14秒前
研友_851KE8发布了新的文献求助10
14秒前
14秒前
一段乐多发布了新的文献求助10
14秒前
14秒前
华仔完成签到,获得积分10
14秒前
刘百慧完成签到,获得积分10
14秒前
14秒前
Wyan发布了新的文献求助80
16秒前
成就映秋发布了新的文献求助30
16秒前
科研通AI2S应助坤坤采纳,获得10
16秒前
整齐芷文完成签到,获得积分10
17秒前
科研通AI5应助小马哥36采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794