Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: influence of features number on logistic regression model performance

医学 无线电技术 特征选择 神经组阅片室 放射科 介入放射学 接收机工作特性 特征(语言学) 多发性骨髓瘤 逻辑回归 核医学 内科学 人工智能 神经学 计算机科学 哲学 精神科 语言学
作者
Jianfang Liu,Wei Guo,Piaoe Zeng,Yayuan Geng,Yan Liu,Hanqiang Ouyang,Ning Lang,Huishu Yuan
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (1): 572-581 被引量:21
标识
DOI:10.1007/s00330-021-08150-y
摘要

This study aimed to use the most frequent features to establish a vertebral MRI-based radiomics model that could differentiate multiple myeloma (MM) from metastases and compare the model performance with different features number. We retrospectively analyzed conventional MRI (T1WI and fat-suppression T2WI) of 103 MM patients and 138 patients with metastases. The feature selection process included four steps. The first three steps defined as conventional feature selection (CFS), carried out 50 times (ten times with 5-fold cross-validation), included variance threshold, SelectKBest, and least absolute shrinkage and selection operator. The most frequent fixed features were selected for modeling during the last step. The number of events per independent variable (EPV) is the number of patients in a smaller subgroup divided by the number of radiomics features considered in developing the prediction model. The EPV values considered were 5, 10, 15, and 20. Therefore, we constructed four models using the top 16, 8, 6, and 4 most frequent features, respectively. The models constructed with features selected by CFS were also compared. The AUCs of 20EPV-Model, 15EPV-Model, and CSF-Model (AUC = 0.71, 0.81, and 0.78) were poor than 10EPV-Model (AUC = 0.84, p < 0.001). The AUC of 10EPV-Model was comparable with 5EPV-Model (AUC = 0.85, p = 0.480). The radiomics model constructed with an appropriate small number of the most frequent features could well distinguish metastases from MM based on conventional vertebral MRI. Based on our results, we recommend following the 10 EPV as the rule of thumb for feature selection. • The developed radiomics model could distinguish metastases from multiple myeloma based on conventional vertebral MRI. • An accurate model based on just a handful of the most frequent features could be constructed by utilizing multiple feature reduction techniques. • An event per independent variable value of 10 is recommended as a rule of thumb for modeling feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜夔完成签到,获得积分10
刚刚
1秒前
搜集达人应助耍酷芹菜采纳,获得10
2秒前
3秒前
3秒前
3秒前
秋骊发布了新的文献求助10
3秒前
3秒前
彭于晏应助哈哈采纳,获得20
5秒前
5秒前
5秒前
五五发布了新的文献求助10
7秒前
7秒前
乐乐应助美丽采纳,获得10
7秒前
zyfqpc应助乐乐乐乐乐乐采纳,获得10
8秒前
8秒前
susu发布了新的文献求助10
8秒前
...发布了新的文献求助10
9秒前
11秒前
关怀关关完成签到,获得积分10
13秒前
14秒前
科研界的滂菜完成签到,获得积分10
16秒前
17秒前
17秒前
李李发布了新的文献求助10
18秒前
传奇3应助naturehome采纳,获得10
18秒前
18秒前
感性的荟发布了新的文献求助10
18秒前
哈呵嚯嘿呀完成签到,获得积分10
18秒前
关怀关关发布了新的文献求助10
19秒前
20秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
23秒前
感性的荟完成签到,获得积分10
23秒前
周乘风发布了新的文献求助10
28秒前
29秒前
30秒前
大个应助张艺恬采纳,获得30
30秒前
机智的书竹完成签到,获得积分20
31秒前
32秒前
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706