Supervised Machine Learning-Based Cardiovascular Disease Analysis and Prediction

逻辑回归 机器学习 疾病 人工智能 决策树 多样性(控制论) 心脏病 随机森林 计算机科学 可信赖性 预测建模 医学 数据挖掘 重症监护医学 内科学 计算机安全
作者
M. D. Amzad Hossen,Tahia Tazin,Sumiaya Khan,Evan Alam,Hossain Ahmed Sojib,Mohammad Monirujjaman Khan,Abdulmajeed Alsufyani
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2021: 1-10 被引量:8
标识
DOI:10.1155/2021/1792201
摘要

Cardiovascular illness, often commonly known as heart disease, encompasses a variety of diseases that affect the heart and has been the leading cause of mortality globally in recent decades. It is associated with numerous risks for heart disease and a requirement of the moment to get accurate, trustworthy, and reasonable methods to establish an early diagnosis in order to accomplish early disease treatment. In the healthcare sector, data analysis is a widely utilized method for processing massive amounts of data. Researchers use a variety of statistical and machine learning methods to evaluate massive amounts of complicated medical data, assisting healthcare practitioners in predicting cardiac disease. This study covers many aspects of cardiac illness, as well as a model based on supervised learning techniques such as Random Forest (RF), Decision Tree (DT), and Logistic Regression (LR). It makes use of an existing dataset from the UCI Cleveland database of heart disease patients. There are 303 occurrences and 76 characteristics in the collection. Only 14 of these 76 characteristics are evaluated for testing, which is necessary to validate the performance of various methods. The purpose of this study is to forecast the likelihood of individuals getting heart disease. The findings show that logistic regression achieves the best accuracy score (92.10%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
段大开发布了新的文献求助10
2秒前
2秒前
优雅蓝血发布了新的文献求助10
3秒前
爱静静应助flysky120采纳,获得10
4秒前
lilili2060发布了新的文献求助10
5秒前
Jasper应助酷酷念波采纳,获得10
5秒前
5秒前
斯文败类应助入门的橙橙采纳,获得10
5秒前
7秒前
嗅炸弹的蜗牛完成签到,获得积分10
7秒前
IKUN完成签到,获得积分10
7秒前
无限的FF发布了新的文献求助10
8秒前
ddl完成签到,获得积分10
9秒前
Hello应助Literaturecome采纳,获得10
10秒前
sxyd发布了新的文献求助10
11秒前
姜茶发布了新的文献求助10
13秒前
邓希静完成签到 ,获得积分10
14秒前
我是125应助石头采纳,获得10
15秒前
所所应助NAN采纳,获得10
17秒前
18秒前
19秒前
19秒前
jisidehuli完成签到,获得积分10
19秒前
19秒前
Lucas应助swordlee采纳,获得30
20秒前
大狗砸发布了新的文献求助10
20秒前
五个跳舞的人完成签到,获得积分10
20秒前
风中的棒棒糖完成签到,获得积分10
21秒前
manman发布了新的文献求助10
23秒前
jisidehuli发布了新的文献求助10
24秒前
24秒前
lxd发布了新的文献求助20
25秒前
酷酷念波发布了新的文献求助10
26秒前
科研通AI5应助吴1采纳,获得10
27秒前
27秒前
魁梧的笑阳完成签到 ,获得积分10
28秒前
manman完成签到,获得积分10
29秒前
科研通AI5应助vayne采纳,获得10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555383
求助须知:如何正确求助?哪些是违规求助? 3131010
关于积分的说明 9389629
捐赠科研通 2830491
什么是DOI,文献DOI怎么找? 1556069
邀请新用户注册赠送积分活动 726432
科研通“疑难数据库(出版商)”最低求助积分说明 715738