Align to locate: Registering photogrammetric point clouds to BIM for robust indoor localization

摄影测量学 点云 点(几何) 计算机视觉 计算机科学 人工智能 遥感 工程类 计算机图形学(图像) 地理 几何学 数学
作者
Junjie Chen,Shuai Li,Weisheng Lu
出处
期刊:Building and Environment [Elsevier]
卷期号:209: 108675-108675 被引量:27
标识
DOI:10.1016/j.buildenv.2021.108675
摘要

Indoor localization is critical for many smart applications in built environments such as service robot navigation and facility management. Building information models (BIMs) provide new streams of spatial and visual information about building interiors that can be exploited for robust indoor localization. However, previous localization methods that used BIM were unable to achieve high precision and accuracy, limiting their practical applications. To address this challenge, a new approach, "align-to-locate (A2L)", is proposed in this study to leverage BIM as a reference to rectify and fine-tune coarse camera poses estimated by photogrammetry . The camera pose rectification is achieved using a new registration algorithm that aligns a photogrammetric point cloud with a BIM-referenced point cloud. The experiments demonstrated the effectiveness of the proposed A2L approach, which outperformed the state of the art with a localization error of 1.07 m and an orientation deviation of 3.7°. It was also found that query point clouds generated from photographs taken along the lateral or longitude directions are more conducive for registration. While increasing the number of data collection locations and images from each location can provide higher accuracy, this approach may compromise the computational speed. This study contributes to the challenging indoor localization problem by proposing the A2L approach and evaluating its applicability for more robust camera pose estimation through point-cloud-to-BIM registration. The developed A2L approach can be integrated as a post-processing module in existing vision-based localization methods to fine-tune their estimated camera poses. • An "Align-to-Locate (A2L)" approach is proposed for robust indoor localization. • Precise camera pose is estimated by aligning point clouds with BIM. • A2L improved the accuracy of BIM-enabled visual localization. • A2L can be integrated with previous methods to finetune their estimated camera poses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangdake完成签到,获得积分10
1秒前
完美世界应助Pauline采纳,获得30
1秒前
1秒前
论文通通应助否认冶游史采纳,获得10
2秒前
英俊的铭应助manholeFixerXM采纳,获得10
2秒前
美味的薯片完成签到 ,获得积分10
3秒前
1qa发布了新的文献求助10
4秒前
6秒前
舒服的觅云完成签到,获得积分10
7秒前
SciGPT应助丶氵一生里采纳,获得10
8秒前
zhangxinyu发布了新的文献求助10
11秒前
hgfg发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助Joel采纳,获得10
12秒前
林lin完成签到 ,获得积分10
14秒前
lizhen完成签到,获得积分10
15秒前
Hjj完成签到,获得积分10
16秒前
yunxi完成签到 ,获得积分10
16秒前
17秒前
Pana发布了新的文献求助20
18秒前
二十八画生完成签到,获得积分10
19秒前
科研通AI2S应助飘逸若蕊采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
21秒前
嗯哼应助科研通管家采纳,获得20
21秒前
Wang完成签到 ,获得积分10
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得30
22秒前
刘YF发布了新的文献求助10
22秒前
嗯哼应助科研通管家采纳,获得20
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129