Align to locate: Registering photogrammetric point clouds to BIM for robust indoor localization

摄影测量学 点云 点(几何) 计算机视觉 计算机科学 人工智能 遥感 工程类 计算机图形学(图像) 地理 几何学 数学
作者
Junjie Chen,Shuai Li,Weisheng Lu
出处
期刊:Building and Environment [Elsevier BV]
卷期号:209: 108675-108675 被引量:27
标识
DOI:10.1016/j.buildenv.2021.108675
摘要

Indoor localization is critical for many smart applications in built environments such as service robot navigation and facility management. Building information models (BIMs) provide new streams of spatial and visual information about building interiors that can be exploited for robust indoor localization. However, previous localization methods that used BIM were unable to achieve high precision and accuracy, limiting their practical applications. To address this challenge, a new approach, "align-to-locate (A2L)", is proposed in this study to leverage BIM as a reference to rectify and fine-tune coarse camera poses estimated by photogrammetry . The camera pose rectification is achieved using a new registration algorithm that aligns a photogrammetric point cloud with a BIM-referenced point cloud. The experiments demonstrated the effectiveness of the proposed A2L approach, which outperformed the state of the art with a localization error of 1.07 m and an orientation deviation of 3.7°. It was also found that query point clouds generated from photographs taken along the lateral or longitude directions are more conducive for registration. While increasing the number of data collection locations and images from each location can provide higher accuracy, this approach may compromise the computational speed. This study contributes to the challenging indoor localization problem by proposing the A2L approach and evaluating its applicability for more robust camera pose estimation through point-cloud-to-BIM registration. The developed A2L approach can be integrated as a post-processing module in existing vision-based localization methods to fine-tune their estimated camera poses. • An "Align-to-Locate (A2L)" approach is proposed for robust indoor localization. • Precise camera pose is estimated by aligning point clouds with BIM. • A2L improved the accuracy of BIM-enabled visual localization. • A2L can be integrated with previous methods to finetune their estimated camera poses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
5秒前
7秒前
daisy发布了新的文献求助10
9秒前
极光完成签到,获得积分10
9秒前
9秒前
qifeng完成签到,获得积分10
11秒前
吾将上下而求索应助lJH采纳,获得10
11秒前
萧凌雪完成签到,获得积分10
13秒前
小鱼儿发布了新的文献求助10
13秒前
14秒前
14秒前
zzzyyyppp完成签到,获得积分10
14秒前
LL完成签到,获得积分10
16秒前
16秒前
20秒前
HN_litchi_King完成签到,获得积分10
22秒前
lJH完成签到,获得积分10
22秒前
用户5063899完成签到,获得积分10
23秒前
Eirrr发布了新的文献求助10
23秒前
26秒前
东山发布了新的文献求助10
27秒前
ll完成签到,获得积分10
27秒前
28秒前
无花果应助qst采纳,获得10
31秒前
syhjxk完成签到,获得积分10
31秒前
风中道罡发布了新的文献求助10
32秒前
Eirrr完成签到,获得积分10
33秒前
33秒前
惠归尘发布了新的文献求助10
35秒前
搜集达人应助东山采纳,获得10
36秒前
量子星尘发布了新的文献求助10
36秒前
36秒前
无限的山水完成签到 ,获得积分10
36秒前
36秒前
37秒前
37秒前
江三村完成签到 ,获得积分10
38秒前
舌T发布了新的文献求助10
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150