AN ASYMPTOTIC THEORY FOR LEAST SQUARES MODEL AVERAGING WITH NESTED MODELS

数学 估计员 渐近最优算法 应用数学 选型 渐近分析 最小二乘函数近似 蒙特卡罗方法 渐近分布 频数推理 数学优化 统计 贝叶斯推理 贝叶斯概率
作者
Fang Fang,Chaoxia Yuan,Wenling Tian
出处
期刊:Econometric Theory [Cambridge University Press]
卷期号:39 (2): 412-441 被引量:14
标识
DOI:10.1017/s0266466622000032
摘要

Theoretical results of frequentist model averaging mainly focus on asymptotic optimality and asymptotic distribution of the model averaging estimator. However, even for basic least squares model averaging, many theoretical problems have not been well addressed yet. This article discusses asymptotic properties of a class of least squares model averaging methods with nested candidate models that includes the Mallows model averaging (MMA) of Hansen (2007, Econometrica 75, 1175–1189) as a special case. Two scenarios are considered: (i) all candidate models are under-fitted; and (ii) the true model is included in the candidate models. We find that in the first scenario, the least squares model averaging method asymptotically assigns weight one to the largest candidate model and the resulting model averaging estimator is asymptotically normal. In the second scenario with a slightly special weight space, if the penalty factor in the weight selection criterion is diverging with certain order, the model averaging estimator is asymptotically optimal by putting weight one to the true model. However, MMA with fixed model dimensions is not asymptotically optimal since it puts nonnegligible weights to over-fitted models. The theoretical results are clearly summarized with their restrictions, and some critical implications are discussed. Monte Carlo simulations confirm our theoretical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao发布了新的文献求助10
3秒前
3秒前
Owen应助坤坤采纳,获得10
3秒前
4秒前
一一发布了新的文献求助10
4秒前
4秒前
8秒前
愉快向彤完成签到 ,获得积分10
9秒前
10秒前
12秒前
NexusExplorer应助谦让的芷巧采纳,获得10
13秒前
风趣的老太完成签到,获得积分10
13秒前
13秒前
共享精神应助xiao采纳,获得10
15秒前
17秒前
18秒前
sober完成签到,获得积分10
20秒前
Pupil发布了新的文献求助30
22秒前
CipherSage应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
26秒前
Owen应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
26秒前
合适背包发布了新的文献求助10
29秒前
31秒前
33秒前
Pupil完成签到,获得积分10
33秒前
ewind完成签到 ,获得积分10
34秒前
慕青应助小布采纳,获得10
35秒前
合适背包完成签到,获得积分20
36秒前
37秒前
丘比特应助小费采纳,获得30
38秒前
38秒前
uniphoton发布了新的文献求助10
40秒前
北风应助旧旧采纳,获得10
48秒前
细心的小懒虫完成签到,获得积分10
51秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775527
求助须知:如何正确求助?哪些是违规求助? 3321201
关于积分的说明 10203903
捐赠科研通 3036017
什么是DOI,文献DOI怎么找? 1665907
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766