An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method

计算机科学 大津法 人工智能 图像分割 分割 模式识别(心理学) 水准点(测量) 趋同(经济学) 算法 初始化 大地测量学 经济增长 经济 程序设计语言 地理
作者
Guoyuan Ma,Xiaofeng Yue
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:113: 104960-104960 被引量:72
标识
DOI:10.1016/j.engappai.2022.104960
摘要

In this paper, an improved multithreshold image segmentation method based on the whale optimization algorithm (RAV-WOA) is proposed, with the between-class variance (Otsu method) as the objective function. The proposed RAV-WOA is able to select satisfactory optimal thresholds while ensuring high efficiency and quality when performing image segmentation on grayscale and color images In the current work, a reverse learning strategy was introduced into the initialization of RAV-WOA populations to improve the quality of the initial population of whales. An adaptive weighting strategy was introduced into the RAV-WOA algorithm, which is influenced by the fitness value and the number of iterations, to balance the global search capability of the algorithm with the local exploitation capability. The proposed RAV-WOA is then applied to the Otsu method to solve the multilevel thresholding image segmentation problem. To better verify the effectiveness of the proposed method, this paper compares the RAV-WOA with some classical heuristic algorithms and performs image segmentation experiments on a set of benchmark images with low and high thresholds. The experimental results show that the convergence speed and convergence accuracy of RAV-WOA are significantly better than other algorithms, and the segmentation results of RAV-WOA in multithreshold image segmentation have better quality and stability than other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助fjm采纳,获得10
刚刚
chen发布了新的文献求助10
1秒前
青玄发布了新的文献求助10
1秒前
软甜纱雾发布了新的文献求助10
1秒前
1秒前
香菜大王发布了新的文献求助10
1秒前
2秒前
2秒前
科研通AI2S应助高木同学采纳,获得10
2秒前
sunny发布了新的文献求助10
3秒前
小蘑菇应助文献高手采纳,获得10
3秒前
黄晓杰2024完成签到 ,获得积分10
3秒前
7秒前
7秒前
材料生发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
9秒前
隐形曼青应助杀出个黎明采纳,获得10
9秒前
chen完成签到,获得积分10
10秒前
小伙子完成签到,获得积分10
11秒前
Angelos发布了新的文献求助10
11秒前
12秒前
12秒前
牛芳草完成签到,获得积分10
12秒前
f111发布了新的文献求助10
13秒前
香菜大王完成签到,获得积分10
13秒前
13秒前
14秒前
Dr发布了新的文献求助10
14秒前
14秒前
Jasper应助妮儿采纳,获得10
14秒前
15秒前
xfy完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
华仔应助Shane采纳,获得10
18秒前
毛豆发布了新的文献求助10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253