Critical features identification for chemical chronic toxicity based on mechanistic forecast models

水生毒理学 慢性毒性 毒性 人口 水生生态系统 数量结构-活动关系 鉴定(生物学) 污染物 环境科学 训练集 环境化学 生态学 生物 机器学习 计算机科学 化学 人工智能 环境卫生 医学 有机化学
作者
Xiaoqing Wang,Fei Li,Jingwen Chen,Yuefa Teng,Chenglong Ji,Huifeng Wu
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:307: 119584-119584 被引量:4
标识
DOI:10.1016/j.envpol.2022.119584
摘要

Facing billions of tons of pollutants entering the ocean each year, aquatic toxicity is becoming a crucial endpoint for evaluating chemical adverse effects on ecosystems. Notably, huge amount of toxic chemicals at environmental relevant doses can cause potential adverse effects. However, chronic aquatic toxicity effects of chemicals are much scarcer, especially at population level. Rotifers are highly sensitive to toxicants even at chronic low-doses and their communities are usually considered as effective indicators for assessing the status of aquatic ecosystems. Therefore, the no observed effect concentration (NOEC) for population abundance of rotifers were selected as endpoints to develop machine learning models for the prediction of chemical aquatic chronic toxicity. In this study, forty-eight binary models were built by eight types of chemical descriptors combined with six machine learning algorithms. The best binary model was 1D & 2D molecular descriptors - random trees model (RT) with high balanced accuracy (BA) (0.83 for training and 0.83 for validation set), and Matthews correlation coefficient (MCC) (0.72 for training set and 0.67 for validation set). Moreover, the optimal model identified the primary factors (SpMAD_Dzp, AMW, MATS2v) and filtered out three high alerting substructures [c1cc(Cl)cc1, CNCO, CCOP(=S)(OCC)O] influencing the chronic aquatic toxicity. These results showed that the compounds with low molecular volume, high polarity and molecular weight could contribute to adverse effects on rotifers, facilitating the deeper understanding of chronic toxicity mechanisms. In addition, forecast models had better performances than the common models embedded into ECOSAR software. This study provided insights into structural features responsible for the toxicity of different groups of chemicals and thereby allowed for the rational design of green and safer alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无敌吴硕应助文艺香菱采纳,获得10
1秒前
哎呦喂发布了新的文献求助10
1秒前
迟大猫应助瓶里岑采纳,获得10
1秒前
1秒前
善学以致用应助Lee采纳,获得10
1秒前
糊涂的元珊完成签到 ,获得积分10
1秒前
1秒前
2秒前
Cici发布了新的文献求助10
2秒前
2秒前
Yuyu完成签到 ,获得积分10
2秒前
夹心吉吉完成签到 ,获得积分10
2秒前
小糯完成签到,获得积分10
3秒前
3秒前
迅速冥茗完成签到,获得积分10
3秒前
3秒前
漂亮的雁露完成签到,获得积分20
3秒前
3秒前
艳艳子完成签到,获得积分10
4秒前
chenyu发布了新的文献求助10
4秒前
c1302128340完成签到,获得积分10
4秒前
4秒前
生壁完成签到,获得积分10
5秒前
一株多肉完成签到,获得积分10
5秒前
柳白发布了新的文献求助10
5秒前
雾暮灬发布了新的文献求助10
5秒前
Seawind发布了新的文献求助10
5秒前
阿木木完成签到,获得积分10
6秒前
喷香大蒜瓣完成签到,获得积分10
6秒前
ldp发布了新的文献求助10
6秒前
我是老大应助tangz采纳,获得10
6秒前
顾矜应助淡然篮球采纳,获得10
7秒前
7秒前
橘猫这里发布了新的文献求助10
7秒前
7秒前
ysy完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666840
求助须知:如何正确求助?哪些是违规求助? 3225706
关于积分的说明 9764854
捐赠科研通 2935572
什么是DOI,文献DOI怎么找? 1607763
邀请新用户注册赠送积分活动 759353
科研通“疑难数据库(出版商)”最低求助积分说明 735287