计算生物学
顺序装配
生物导体
工作流程
RNA序列
转录组
生物
从头转录组组装
序列分析
基因组浏览器
软件
基因
基因组
基因组学
计算机科学
参考基因组
遗传学
数据库
基因表达
程序设计语言
作者
Brian J. Haas,Alexie Papanicolaou,Moran Yassour,Manfred Grabherr,Philip D. Blood,Joshua C. Bowden,Matthew Brian Couger,David Eccles,Bo Li,Matthias Lieber,Matthew D. MacManes,Michael Ott,Joshua Orvis,Nathalie Pochet,Francesco Strozzi,Nathan T. Weeks,Rick Westerman,Thomas William,Colin N. Dewey,Robert Henschel,Richard D. LeDuc,Nir Friedman,Aviv Regev
出处
期刊:Nature Protocols
[Nature Portfolio]
日期:2013-07-11
卷期号:8 (8): 1494-1512
被引量:7680
标识
DOI:10.1038/nprot.2013.084
摘要
De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net . The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.
科研通智能强力驱动
Strongly Powered by AbleSci AI