Rating Exposure Control Using Bayesian Decision Analysis

贝叶斯概率 百分位 统计 后验概率 决策规则 概率分布 样品(材料) 数学 运筹学 计算机科学 色谱法 化学
作者
Paul C. Hewett,Perry W. Logan,John Mulhausen,Gurumurthy Ramachandran,Sudipto Banerjee
出处
期刊:Journal of Occupational and Environmental Hygiene [Informa]
卷期号:3 (10): 568-581 被引量:81
标识
DOI:10.1080/15459620600914641
摘要

A model is presented for applying Bayesian statistical techniques to the problem of determining, from the usual limited number of exposure measurements, whether the exposure profile for a similar exposure group can be considered a Category 0, 1, 2, 3, or 4 exposure. The categories were adapted from the AIHA exposure category scheme and refer to (0) negligible or trivial exposure (i.e., the true X 0.95 < 1%OEL), (1) highly controlled (i.e., X 0.95 < 10%OEL), (2) well controlled (i.e., X 0.95 < 50%OEL), (3) controlled (i.e., X 0.95 < 100%OEL), or (4) poorly controlled (i.e., X0.95 > 1%OEL) exposures. Unlike conventional statistical methods applied to exposure data, Bayesian statistical techniques can be adapted to explicitly take into account professional judgment or other sources of information. The analysis output consists of a distribution (i.e., set) of decision probabilities: e.g., 1%, 80%, 12%, 5%, and 2% probability that the exposure profile is a Category 0, 1, 2, 3, or 4 exposure. By inspection of these decision probabilities, rather than the often difficult to interpret point estimates (e.g., the sample 95th percentile exposure) and confidence intervals, a risk manager can be better positioned to arrive at an effective (i.e., correct) and efficient decision. Bayesian decision methods are based on the concepts of prior, likelihood, and posterior distributions of decision probabilities. The prior decision distribution represents what an industrial hygienist knows about this type of operation, using professional judgment; company, industry, or trade organization experience; historical or surrogate exposure data; or exposure modeling predictions. The likelihood decision distribution represents the decision probabilities based on an analysis of only the current data. The posterior decision distribution is derived by mathematically combining the functions underlying the prior and likelihood decision distributions, and represents the final decision probabilities. Advantages of Bayesian decision analysis include: (a) decision probabilities are easier to understand by risk managers and employees; (b) prior data, professional judgment, or modeling information can be objectively incorporated into the decision-making process; (c) decisions can be made with greater certainty; (d) the decision analysis can be constrained to a more realistic “parameter space” (i.e., the range of plausible values for the true geometric mean and geometric standard deviation); and (e) fewer measurements are necessary whenever the prior distribution is well defined and the process is fairly stable. Furthermore, Bayesian decision analysis provides an obvious feedback mechanism that can be used by an industrial hygienist to improve professional judgment. For example, if the likelihood decision distribution is inconsistent with the prior decision distribution then it is likely that either a significant process change has occurred or the industrial hygienist's initial judgment was incorrect. In either case, the industrial hygienist should readjust his judgment regarding this operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助Joshua采纳,获得10
1秒前
2秒前
2秒前
3秒前
蒋时晏应助陶醉薯片采纳,获得30
3秒前
3秒前
执着的灯泡完成签到,获得积分10
3秒前
睡到自然醒完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
Musen完成签到,获得积分10
4秒前
科研通AI5应助叫滚滚采纳,获得10
4秒前
4秒前
123456发布了新的文献求助10
4秒前
大方安白发布了新的文献求助10
5秒前
Hello应助正直冰露采纳,获得10
5秒前
lyy完成签到 ,获得积分10
6秒前
沈随便发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
灵巧荆发布了新的文献求助10
7秒前
丘奇发布了新的文献求助10
7秒前
7秒前
7秒前
通~发布了新的文献求助10
8秒前
8秒前
搜集达人应助FloppyWow采纳,获得10
8秒前
Musen发布了新的文献求助10
8秒前
pluto应助金宝采纳,获得10
9秒前
ii完成签到 ,获得积分10
9秒前
温言发布了新的文献求助10
9秒前
CodeCraft应助务实盼海采纳,获得10
10秒前
orixero应助JUSTs0so采纳,获得10
10秒前
11秒前
欣欣子完成签到 ,获得积分10
11秒前
顺利毕业发布了新的文献求助10
11秒前
西奥完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762