Rating Exposure Control Using Bayesian Decision Analysis

贝叶斯概率 百分位 统计 后验概率 决策规则 概率分布 样品(材料) 数学 运筹学 计算机科学 色谱法 化学
作者
Paul C. Hewett,Perry W. Logan,John Mulhausen,Gurumurthy Ramachandran,Sudipto Banerjee
出处
期刊:Journal of Occupational and Environmental Hygiene [Taylor & Francis]
卷期号:3 (10): 568-581 被引量:81
标识
DOI:10.1080/15459620600914641
摘要

A model is presented for applying Bayesian statistical techniques to the problem of determining, from the usual limited number of exposure measurements, whether the exposure profile for a similar exposure group can be considered a Category 0, 1, 2, 3, or 4 exposure. The categories were adapted from the AIHA exposure category scheme and refer to (0) negligible or trivial exposure (i.e., the true X 0.95 < 1%OEL), (1) highly controlled (i.e., X 0.95 < 10%OEL), (2) well controlled (i.e., X 0.95 < 50%OEL), (3) controlled (i.e., X 0.95 < 100%OEL), or (4) poorly controlled (i.e., X0.95 > 1%OEL) exposures. Unlike conventional statistical methods applied to exposure data, Bayesian statistical techniques can be adapted to explicitly take into account professional judgment or other sources of information. The analysis output consists of a distribution (i.e., set) of decision probabilities: e.g., 1%, 80%, 12%, 5%, and 2% probability that the exposure profile is a Category 0, 1, 2, 3, or 4 exposure. By inspection of these decision probabilities, rather than the often difficult to interpret point estimates (e.g., the sample 95th percentile exposure) and confidence intervals, a risk manager can be better positioned to arrive at an effective (i.e., correct) and efficient decision. Bayesian decision methods are based on the concepts of prior, likelihood, and posterior distributions of decision probabilities. The prior decision distribution represents what an industrial hygienist knows about this type of operation, using professional judgment; company, industry, or trade organization experience; historical or surrogate exposure data; or exposure modeling predictions. The likelihood decision distribution represents the decision probabilities based on an analysis of only the current data. The posterior decision distribution is derived by mathematically combining the functions underlying the prior and likelihood decision distributions, and represents the final decision probabilities. Advantages of Bayesian decision analysis include: (a) decision probabilities are easier to understand by risk managers and employees; (b) prior data, professional judgment, or modeling information can be objectively incorporated into the decision-making process; (c) decisions can be made with greater certainty; (d) the decision analysis can be constrained to a more realistic “parameter space” (i.e., the range of plausible values for the true geometric mean and geometric standard deviation); and (e) fewer measurements are necessary whenever the prior distribution is well defined and the process is fairly stable. Furthermore, Bayesian decision analysis provides an obvious feedback mechanism that can be used by an industrial hygienist to improve professional judgment. For example, if the likelihood decision distribution is inconsistent with the prior decision distribution then it is likely that either a significant process change has occurred or the industrial hygienist's initial judgment was incorrect. In either case, the industrial hygienist should readjust his judgment regarding this operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助zhangcdoctor采纳,获得10
刚刚
一只羊发布了新的文献求助10
1秒前
博修发布了新的文献求助10
1秒前
genesquared完成签到,获得积分10
2秒前
渊思发布了新的文献求助10
2秒前
星辰大海应助linmo采纳,获得10
2秒前
YamDaamCaa应助qikkk采纳,获得30
3秒前
研友_LaNYNn发布了新的文献求助10
3秒前
Hello应助啦啦啦啦采纳,获得10
3秒前
莘莘发布了新的文献求助10
4秒前
BingyuDu完成签到 ,获得积分20
4秒前
星辰大海应助咕噜坚果采纳,获得10
6秒前
7秒前
zzzkyt发布了新的文献求助10
9秒前
汉堡包应助科研爱好者采纳,获得10
9秒前
9秒前
10秒前
11秒前
12秒前
饼藏发布了新的文献求助80
13秒前
领导范儿应助zzzkyt采纳,获得10
13秒前
13秒前
14秒前
打打应助刘刘宇航采纳,获得10
14秒前
15秒前
谦让的牛排完成签到 ,获得积分10
16秒前
16秒前
耶耶耶发布了新的文献求助10
16秒前
17秒前
linmo发布了新的文献求助10
17秒前
隐形曼青应助xuaotian采纳,获得30
18秒前
334发布了新的文献求助10
18秒前
北岭雪兮发布了新的文献求助10
19秒前
刘刘宇航完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
YamDaamCaa应助qikkk采纳,获得30
21秒前
21秒前
cy完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578