Rating Exposure Control Using Bayesian Decision Analysis

贝叶斯概率 百分位 统计 后验概率 决策规则 概率分布 样品(材料) 数学 运筹学 计算机科学 色谱法 化学
作者
Paul C. Hewett,Perry W. Logan,John Mulhausen,Gurumurthy Ramachandran,Sudipto Banerjee
出处
期刊:Journal of Occupational and Environmental Hygiene [Informa]
卷期号:3 (10): 568-581 被引量:81
标识
DOI:10.1080/15459620600914641
摘要

A model is presented for applying Bayesian statistical techniques to the problem of determining, from the usual limited number of exposure measurements, whether the exposure profile for a similar exposure group can be considered a Category 0, 1, 2, 3, or 4 exposure. The categories were adapted from the AIHA exposure category scheme and refer to (0) negligible or trivial exposure (i.e., the true X 0.95 < 1%OEL), (1) highly controlled (i.e., X 0.95 < 10%OEL), (2) well controlled (i.e., X 0.95 < 50%OEL), (3) controlled (i.e., X 0.95 < 100%OEL), or (4) poorly controlled (i.e., X0.95 > 1%OEL) exposures. Unlike conventional statistical methods applied to exposure data, Bayesian statistical techniques can be adapted to explicitly take into account professional judgment or other sources of information. The analysis output consists of a distribution (i.e., set) of decision probabilities: e.g., 1%, 80%, 12%, 5%, and 2% probability that the exposure profile is a Category 0, 1, 2, 3, or 4 exposure. By inspection of these decision probabilities, rather than the often difficult to interpret point estimates (e.g., the sample 95th percentile exposure) and confidence intervals, a risk manager can be better positioned to arrive at an effective (i.e., correct) and efficient decision. Bayesian decision methods are based on the concepts of prior, likelihood, and posterior distributions of decision probabilities. The prior decision distribution represents what an industrial hygienist knows about this type of operation, using professional judgment; company, industry, or trade organization experience; historical or surrogate exposure data; or exposure modeling predictions. The likelihood decision distribution represents the decision probabilities based on an analysis of only the current data. The posterior decision distribution is derived by mathematically combining the functions underlying the prior and likelihood decision distributions, and represents the final decision probabilities. Advantages of Bayesian decision analysis include: (a) decision probabilities are easier to understand by risk managers and employees; (b) prior data, professional judgment, or modeling information can be objectively incorporated into the decision-making process; (c) decisions can be made with greater certainty; (d) the decision analysis can be constrained to a more realistic “parameter space” (i.e., the range of plausible values for the true geometric mean and geometric standard deviation); and (e) fewer measurements are necessary whenever the prior distribution is well defined and the process is fairly stable. Furthermore, Bayesian decision analysis provides an obvious feedback mechanism that can be used by an industrial hygienist to improve professional judgment. For example, if the likelihood decision distribution is inconsistent with the prior decision distribution then it is likely that either a significant process change has occurred or the industrial hygienist's initial judgment was incorrect. In either case, the industrial hygienist should readjust his judgment regarding this operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
南国之霄发布了新的文献求助10
4秒前
4秒前
阿崔完成签到,获得积分10
4秒前
888发布了新的文献求助10
5秒前
Youx完成签到 ,获得积分10
6秒前
Criminology34应助mgl采纳,获得10
7秒前
南风不竞发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
Wu发布了新的文献求助10
10秒前
12秒前
huangchenxi完成签到 ,获得积分10
14秒前
小小楊发布了新的文献求助10
15秒前
小热气球发布了新的文献求助10
18秒前
keeptg发布了新的文献求助10
19秒前
错过花期的花完成签到 ,获得积分10
23秒前
WayneO完成签到,获得积分10
23秒前
25秒前
充电宝应助牛小浓采纳,获得30
25秒前
26秒前
bless完成签到,获得积分10
26秒前
画个饼充饥完成签到,获得积分10
30秒前
给钱谢谢发布了新的文献求助10
31秒前
清爽雁凡发布了新的文献求助10
32秒前
YWJ发布了新的文献求助10
34秒前
绿端完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
35秒前
37秒前
幸运星完成签到 ,获得积分10
39秒前
卞珂完成签到,获得积分10
41秒前
47秒前
小吴同学完成签到,获得积分20
50秒前
可爱的函函应助Harrison采纳,获得10
52秒前
麦璇完成签到 ,获得积分10
52秒前
yqt发布了新的文献求助30
52秒前
量子星尘发布了新的文献求助10
53秒前
YWJ发布了新的文献求助10
53秒前
56秒前
牛小浓给牛小浓的求助进行了留言
58秒前
lichanshen完成签到,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426028
求助须知:如何正确求助?哪些是违规求助? 4539733
关于积分的说明 14170371
捐赠科研通 4457563
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412955