Improving breast cancer diagnostics with deep learning for MRI

医学 概化理论 接收机工作特性 乳腺癌 乳房磁振造影 人口统计学的 癌症 磁共振成像 放射科 深度学习 人工智能 乳腺摄影术 内科学 计算机科学 统计 人口学 社会学 数学
作者
Jan Witowski,Laura Heacock,Beatriu Reig,Stella K. Kang,Alana A. Lewin,Kristine Pysarenko,Shalin Patel,Naziya Samreen,Wojciech Rudnicki,Elżbieta Łuczyńska,T Popiela,Linda Moy,Krzysztof J. Geras
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:14 (664) 被引量:47
标识
DOI:10.1126/scitranslmed.abo4802
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a high sensitivity in detecting breast cancer but often leads to unnecessary biopsies and patient workup. We used a deep learning (DL) system to improve the overall accuracy of breast cancer diagnosis and personalize management of patients undergoing DCE-MRI. On the internal test set ( n = 3936 exams), our system achieved an area under the receiver operating characteristic curve (AUROC) of 0.92 (95% CI: 0.92 to 0.93). In a retrospective reader study, there was no statistically significant difference ( P = 0.19) between five board-certified breast radiologists and the DL system (mean ΔAUROC, +0.04 in favor of the DL system). Radiologists’ performance improved when their predictions were averaged with DL’s predictions [mean ΔAUPRC (area under the precision-recall curve), +0.07]. We demonstrated the generalizability of the DL system using multiple datasets from Poland and the United States. An additional reader study on a Polish dataset showed that the DL system was as robust to distribution shift as radiologists. In subgroup analysis, we observed consistent results across different cancer subtypes and patient demographics. Using decision curve analysis, we showed that the DL system can reduce unnecessary biopsies in the range of clinically relevant risk thresholds. This would lead to avoiding biopsies yielding benign results in up to 20% of all patients with BI-RADS category 4 lesions. Last, we performed an error analysis, investigating situations where DL predictions were mostly incorrect. This exploratory work creates a foundation for deployment and prospective analysis of DL-based models for breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
铁妹儿完成签到 ,获得积分10
1秒前
蝴蝶变成毛毛虫完成签到,获得积分10
2秒前
Ijaz完成签到,获得积分10
2秒前
zijingsy完成签到 ,获得积分10
3秒前
3秒前
活力的妙芙完成签到,获得积分10
6秒前
开心大王完成签到,获得积分10
6秒前
zyfqpc应助wwww采纳,获得10
7秒前
8秒前
稳重的若雁应助白河采纳,获得10
8秒前
李健应助galioo3000采纳,获得10
9秒前
FashionBoy应助QYW采纳,获得10
10秒前
10秒前
Jasper应助mimi采纳,获得10
10秒前
巴拉巴拉发布了新的文献求助10
12秒前
Progie应助含糊的代丝采纳,获得10
12秒前
海茵发布了新的文献求助10
13秒前
龟龟完成签到 ,获得积分10
13秒前
屈聪展发布了新的文献求助10
13秒前
13秒前
李贝宁完成签到 ,获得积分10
14秒前
雪山飞龙发布了新的文献求助10
16秒前
扬帆起航行万里完成签到 ,获得积分10
17秒前
luotaoato完成签到,获得积分10
18秒前
lll发布了新的文献求助10
18秒前
19秒前
lxf完成签到 ,获得积分10
19秒前
21秒前
霸气的惜天完成签到,获得积分10
22秒前
灵巧的yu发布了新的文献求助10
22秒前
lixia完成签到 ,获得积分10
23秒前
kento应助Clay采纳,获得150
24秒前
galioo3000发布了新的文献求助10
24秒前
科研通AI2S应助复杂的如萱采纳,获得10
24秒前
科研靓仔发布了新的文献求助10
24秒前
晚意完成签到 ,获得积分10
26秒前
Ava应助zyyin采纳,获得10
27秒前
不听话的番茄完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023