Improving breast cancer diagnostics with deep learning for MRI

医学 概化理论 接收机工作特性 乳腺癌 乳房磁振造影 人口统计学的 癌症 磁共振成像 放射科 深度学习 人工智能 乳腺摄影术 内科学 计算机科学 统计 人口学 社会学 数学
作者
Jan Witowski,Laura Heacock,Beatriu Reig,Stella K. Kang,Alana A. Lewin,Kristine Pysarenko,Shalin Patel,Naziya Samreen,Wojciech Rudnicki,Elżbieta Łuczyńska,T Popiela,Linda Moy,Krzysztof J. Geras
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:14 (664) 被引量:63
标识
DOI:10.1126/scitranslmed.abo4802
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a high sensitivity in detecting breast cancer but often leads to unnecessary biopsies and patient workup. We used a deep learning (DL) system to improve the overall accuracy of breast cancer diagnosis and personalize management of patients undergoing DCE-MRI. On the internal test set ( n = 3936 exams), our system achieved an area under the receiver operating characteristic curve (AUROC) of 0.92 (95% CI: 0.92 to 0.93). In a retrospective reader study, there was no statistically significant difference ( P = 0.19) between five board-certified breast radiologists and the DL system (mean ΔAUROC, +0.04 in favor of the DL system). Radiologists’ performance improved when their predictions were averaged with DL’s predictions [mean ΔAUPRC (area under the precision-recall curve), +0.07]. We demonstrated the generalizability of the DL system using multiple datasets from Poland and the United States. An additional reader study on a Polish dataset showed that the DL system was as robust to distribution shift as radiologists. In subgroup analysis, we observed consistent results across different cancer subtypes and patient demographics. Using decision curve analysis, we showed that the DL system can reduce unnecessary biopsies in the range of clinically relevant risk thresholds. This would lead to avoiding biopsies yielding benign results in up to 20% of all patients with BI-RADS category 4 lesions. Last, we performed an error analysis, investigating situations where DL predictions were mostly incorrect. This exploratory work creates a foundation for deployment and prospective analysis of DL-based models for breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王耀武完成签到,获得积分10
刚刚
芝士完成签到 ,获得积分10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
amanda发布了新的文献求助10
2秒前
WK发布了新的文献求助10
2秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助hujun采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
4秒前
干饭虫应助1289436采纳,获得10
4秒前
DSFSR应助科研通管家采纳,获得10
4秒前
小赵发布了新的文献求助10
5秒前
kk关闭了kk文献求助
5秒前
留胡子的涵菡完成签到,获得积分10
5秒前
5秒前
Hello应助嘎嘣脆采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
风中冰香应助刻苦蚂蚁采纳,获得10
6秒前
7秒前
NexusExplorer应助刻苦蚂蚁采纳,获得10
7秒前
GINKGO完成签到,获得积分10
7秒前
加油吧弟弟完成签到,获得积分10
7秒前
思源应助科研通管家采纳,获得10
7秒前
wyqking发布了新的文献求助10
8秒前
玛卡巴卡发布了新的文献求助10
8秒前
屈初雪完成签到,获得积分10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
Ian完成签到,获得积分10
8秒前
cui发布了新的文献求助10
8秒前
连灵竹完成签到,获得积分0
8秒前
KATSU关注了科研通微信公众号
9秒前
9秒前
平淡的文龙完成签到,获得积分10
9秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
甘雨露完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182