Improving breast cancer diagnostics with deep learning for MRI

医学 概化理论 接收机工作特性 乳腺癌 乳房磁振造影 人口统计学的 癌症 磁共振成像 放射科 深度学习 人工智能 乳腺摄影术 内科学 计算机科学 统计 人口学 社会学 数学
作者
Jan Witowski,Laura Heacock,Beatriu Reig,Stella K. Kang,Alana A. Lewin,Kristine Pysarenko,Shalin Patel,Naziya Samreen,Wojciech Rudnicki,Elżbieta Łuczyńska,T Popiela,Linda Moy,Krzysztof J. Geras
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:14 (664) 被引量:63
标识
DOI:10.1126/scitranslmed.abo4802
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a high sensitivity in detecting breast cancer but often leads to unnecessary biopsies and patient workup. We used a deep learning (DL) system to improve the overall accuracy of breast cancer diagnosis and personalize management of patients undergoing DCE-MRI. On the internal test set ( n = 3936 exams), our system achieved an area under the receiver operating characteristic curve (AUROC) of 0.92 (95% CI: 0.92 to 0.93). In a retrospective reader study, there was no statistically significant difference ( P = 0.19) between five board-certified breast radiologists and the DL system (mean ΔAUROC, +0.04 in favor of the DL system). Radiologists’ performance improved when their predictions were averaged with DL’s predictions [mean ΔAUPRC (area under the precision-recall curve), +0.07]. We demonstrated the generalizability of the DL system using multiple datasets from Poland and the United States. An additional reader study on a Polish dataset showed that the DL system was as robust to distribution shift as radiologists. In subgroup analysis, we observed consistent results across different cancer subtypes and patient demographics. Using decision curve analysis, we showed that the DL system can reduce unnecessary biopsies in the range of clinically relevant risk thresholds. This would lead to avoiding biopsies yielding benign results in up to 20% of all patients with BI-RADS category 4 lesions. Last, we performed an error analysis, investigating situations where DL predictions were mostly incorrect. This exploratory work creates a foundation for deployment and prospective analysis of DL-based models for breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏诺诺2023完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
jiayan111完成签到,获得积分10
2秒前
夹心发布了新的文献求助100
3秒前
3秒前
4秒前
啃猫爪发布了新的文献求助10
4秒前
Sarah悦完成签到,获得积分10
6秒前
gyjk发布了新的文献求助10
6秒前
潇洒的茗茗完成签到 ,获得积分10
6秒前
cnbhhhhh完成签到,获得积分10
7秒前
7秒前
曾云璐发布了新的文献求助10
8秒前
桃子爱学习完成签到,获得积分10
9秒前
ww发布了新的文献求助10
9秒前
畅快的刚完成签到,获得积分10
10秒前
11秒前
在水一方应助我我我采纳,获得10
12秒前
彭于晏应助啃猫爪采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
大模型应助wang采纳,获得10
13秒前
小李发布了新的文献求助30
13秒前
14秒前
15秒前
15秒前
焦糖咸鱼完成签到,获得积分10
15秒前
李健的小迷弟应助个性鲂采纳,获得10
16秒前
16秒前
16秒前
16秒前
爆米花应助XudongHou采纳,获得30
16秒前
bkagyin应助蓝兰采纳,获得10
18秒前
anuo发布了新的文献求助10
18秒前
给我一块钱完成签到,获得积分10
18秒前
CipherSage应助wrx_KGM采纳,获得10
18秒前
liars发布了新的文献求助10
19秒前
Georges-09发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751