Improving breast cancer diagnostics with deep learning for MRI

医学 概化理论 接收机工作特性 乳腺癌 乳房磁振造影 人口统计学的 癌症 磁共振成像 放射科 深度学习 人工智能 乳腺摄影术 内科学 计算机科学 统计 人口学 数学 社会学
作者
Jan Witowski,Laura Heacock,Beatriu Reig,Stella K. Kang,Alana A. Lewin,Kristine Pysarenko,Shalin Patel,Naziya Samreen,Wojciech Rudnicki,Elżbieta Łuczyńska,Tadeusz Popiela,Linda Moy,Krzysztof J. Geras
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:14 (664): eabo4802-eabo4802 被引量:103
标识
DOI:10.1126/scitranslmed.abo4802
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a high sensitivity in detecting breast cancer but often leads to unnecessary biopsies and patient workup. We used a deep learning (DL) system to improve the overall accuracy of breast cancer diagnosis and personalize management of patients undergoing DCE-MRI. On the internal test set ( n = 3936 exams), our system achieved an area under the receiver operating characteristic curve (AUROC) of 0.92 (95% CI: 0.92 to 0.93). In a retrospective reader study, there was no statistically significant difference ( P = 0.19) between five board-certified breast radiologists and the DL system (mean ΔAUROC, +0.04 in favor of the DL system). Radiologists’ performance improved when their predictions were averaged with DL’s predictions [mean ΔAUPRC (area under the precision-recall curve), +0.07]. We demonstrated the generalizability of the DL system using multiple datasets from Poland and the United States. An additional reader study on a Polish dataset showed that the DL system was as robust to distribution shift as radiologists. In subgroup analysis, we observed consistent results across different cancer subtypes and patient demographics. Using decision curve analysis, we showed that the DL system can reduce unnecessary biopsies in the range of clinically relevant risk thresholds. This would lead to avoiding biopsies yielding benign results in up to 20% of all patients with BI-RADS category 4 lesions. Last, we performed an error analysis, investigating situations where DL predictions were mostly incorrect. This exploratory work creates a foundation for deployment and prospective analysis of DL-based models for breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助自然自行车采纳,获得10
1秒前
讨厌乐跑完成签到 ,获得积分10
1秒前
jiji发布了新的文献求助30
1秒前
2秒前
FashionBoy应助雪糕采纳,获得10
2秒前
2秒前
323431发布了新的文献求助10
3秒前
老唐老唐完成签到 ,获得积分10
3秒前
3秒前
王先进发布了新的文献求助10
4秒前
科目三应助Judy采纳,获得10
4秒前
Janisa发布了新的文献求助10
5秒前
浮游应助王恒采纳,获得10
7秒前
一米八发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Sweet发布了新的文献求助10
9秒前
善学以致用应助徐新雨采纳,获得10
9秒前
瓜子完成签到,获得积分10
9秒前
10秒前
Avery完成签到,获得积分10
10秒前
10秒前
10秒前
每天都想发文章完成签到,获得积分10
11秒前
王恒完成签到,获得积分10
12秒前
英俊的铭应助哇哇哇哇采纳,获得10
12秒前
llt发布了新的文献求助10
12秒前
13秒前
14秒前
踏实孤容完成签到,获得积分10
14秒前
月亮发布了新的文献求助10
14秒前
jiji完成签到,获得积分20
15秒前
smottom应助研友_8Y26PL采纳,获得10
15秒前
Rzz完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
dddd完成签到,获得积分10
16秒前
勤奋一一应助smallsix采纳,获得10
18秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814