Improving breast cancer diagnostics with deep learning for MRI

医学 概化理论 接收机工作特性 乳腺癌 乳房磁振造影 人口统计学的 癌症 磁共振成像 放射科 深度学习 人工智能 乳腺摄影术 内科学 计算机科学 统计 人口学 数学 社会学
作者
Jan Witowski,Laura Heacock,Beatriu Reig,Stella K. Kang,Alana A. Lewin,Kristine Pysarenko,Shalin Patel,Naziya Samreen,Wojciech Rudnicki,Elżbieta Łuczyńska,Tadeusz Popiela,Linda Moy,Krzysztof J. Geras
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:14 (664): eabo4802-eabo4802 被引量:103
标识
DOI:10.1126/scitranslmed.abo4802
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a high sensitivity in detecting breast cancer but often leads to unnecessary biopsies and patient workup. We used a deep learning (DL) system to improve the overall accuracy of breast cancer diagnosis and personalize management of patients undergoing DCE-MRI. On the internal test set ( n = 3936 exams), our system achieved an area under the receiver operating characteristic curve (AUROC) of 0.92 (95% CI: 0.92 to 0.93). In a retrospective reader study, there was no statistically significant difference ( P = 0.19) between five board-certified breast radiologists and the DL system (mean ΔAUROC, +0.04 in favor of the DL system). Radiologists’ performance improved when their predictions were averaged with DL’s predictions [mean ΔAUPRC (area under the precision-recall curve), +0.07]. We demonstrated the generalizability of the DL system using multiple datasets from Poland and the United States. An additional reader study on a Polish dataset showed that the DL system was as robust to distribution shift as radiologists. In subgroup analysis, we observed consistent results across different cancer subtypes and patient demographics. Using decision curve analysis, we showed that the DL system can reduce unnecessary biopsies in the range of clinically relevant risk thresholds. This would lead to avoiding biopsies yielding benign results in up to 20% of all patients with BI-RADS category 4 lesions. Last, we performed an error analysis, investigating situations where DL predictions were mostly incorrect. This exploratory work creates a foundation for deployment and prospective analysis of DL-based models for breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
大模型应助旺仔采纳,获得10
2秒前
3秒前
dandan发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助10
5秒前
李健应助LW采纳,获得10
6秒前
贾学冲发布了新的文献求助10
6秒前
7秒前
7秒前
烟花应助细腻天德采纳,获得30
8秒前
9秒前
不摇头的向日葵完成签到,获得积分10
9秒前
9秒前
NexusExplorer应助song采纳,获得10
9秒前
深情安青应助王可乐采纳,获得10
10秒前
月乐完成签到,获得积分10
11秒前
刻苦大门完成签到 ,获得积分10
12秒前
沉默羔羊完成签到,获得积分10
12秒前
Sang发布了新的文献求助10
12秒前
happy发布了新的文献求助10
12秒前
虚幻唯雪关注了科研通微信公众号
13秒前
13秒前
lmgj发布了新的文献求助10
14秒前
manji发布了新的文献求助10
15秒前
丁一发布了新的文献求助10
15秒前
15秒前
smottom应助Wynne采纳,获得10
15秒前
15秒前
JamesPei应助吃肉璇璇采纳,获得10
17秒前
17秒前
旺仔发布了新的文献求助10
17秒前
19秒前
丫丫发布了新的文献求助10
19秒前
大个应助退堂鼓艺术家采纳,获得10
19秒前
19秒前
张云志发布了新的文献求助10
20秒前
科研通AI2S应助晚上吃什么采纳,获得10
21秒前
学术牛马发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300