已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Long-Tailed Learning: A Survey

深度学习 人工智能 计算机科学 机器学习 班级(哲学) 领域(数学) 公制(单位) 深层神经网络 数据科学 运营管理 数学 纯数学 经济
作者
Yifan Zhang,Bingyi Kang,Bryan Hooi,Shuicheng Yan,Jiashi Feng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10795-10816 被引量:183
标识
DOI:10.1109/tpami.2023.3268118
摘要

Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this article aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助yukpangwoo采纳,获得10
刚刚
酷波er应助tanhaowen采纳,获得10
1秒前
月亮完成签到 ,获得积分10
3秒前
虚心的惮完成签到 ,获得积分10
7秒前
888发布了新的文献求助10
13秒前
大个应助依古比古采纳,获得10
15秒前
顺利山柏完成签到 ,获得积分10
16秒前
乐乐应助一颗小星星采纳,获得10
16秒前
慕容雅柏完成签到 ,获得积分10
17秒前
大力的野狼完成签到,获得积分10
20秒前
20秒前
FashionBoy应助888采纳,获得10
21秒前
3080完成签到 ,获得积分10
21秒前
23秒前
adam完成签到 ,获得积分10
23秒前
24秒前
XudongHou发布了新的文献求助20
27秒前
ventus发布了新的文献求助10
30秒前
画船听雨眠完成签到 ,获得积分10
31秒前
31秒前
邓娅琴完成签到 ,获得积分10
35秒前
小太阳完成签到,获得积分10
35秒前
36秒前
fanlee发布了新的文献求助10
36秒前
37秒前
幸福元霜发布了新的文献求助10
42秒前
43秒前
47秒前
懒羊羊大王完成签到 ,获得积分10
47秒前
XudongHou完成签到,获得积分10
49秒前
丘比特应助木习习采纳,获得10
49秒前
完美世界应助一颗小星星采纳,获得10
50秒前
funnyelephant完成签到 ,获得积分10
53秒前
fang完成签到,获得积分10
53秒前
华仔应助危机的秋玲采纳,获得30
54秒前
顺利白竹完成签到 ,获得积分10
54秒前
阿鑫完成签到 ,获得积分10
55秒前
小脚丫完成签到 ,获得积分10
56秒前
BOB发布了新的文献求助10
56秒前
张同学快去做实验呀完成签到,获得积分10
57秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455575
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022756
捐赠科研通 2739374
什么是DOI,文献DOI怎么找? 1502673
科研通“疑难数据库(出版商)”最低求助积分说明 694583
邀请新用户注册赠送积分活动 693387