Automatic identification method for three-phase structure of pervious concrete based on deep learning network of Mask R-CNN

透水混凝土 鉴定(生物学) 相(物质) 材料科学 深度学习 计算机科学 人工智能 岩土工程 工程类 复合材料 物理 植物 量子力学 水泥 生物
作者
Fan Yu,Huan Cai,Hua Zhang,Mingjun Hu,Rui Zhang,Zhang Gao
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:420: 135534-135534 被引量:1
标识
DOI:10.1016/j.conbuildmat.2024.135534
摘要

Pervious concrete is a three-phase structure, including the pore phase, aggregate phase and paste phase. Currently, the pore phase of pervious concrete can easily be identified with CT and image processing technology. However, there are still technical limitations to identifying the aggregate and paste phases. This paper aims to establish a three-phase structure analysis method for pervious concrete based on deep learning. 30 images of the cross section of nine groups of color-pervious concrete specimens with different coarse aggregate sizes were obtained to form the initial dataset. The initial dataset was preprocessed, labeled and extended, and four deep learning frameworks were selected to train the three-phase structure identification models. By comparing and analyzing the identification effects of different models, the model suitable for three-phase structure identification was determined. The segmentation accuracy of each phase was evaluated. The results show that the method for preparing the dataset required for three-phase structure identification model training could improve identification accuracy. The model can accurately identify the three-phase structure with fewer false and missed identifications. The descending order of three-phase structure identification accuracy was pore phase>aggregate phase>paste phase. This was related to the quality of the dataset and annotation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
zjz9928完成签到,获得积分10
刚刚
刚刚
二皮脸发布了新的文献求助10
1秒前
1秒前
兴奋奇异果完成签到,获得积分10
1秒前
umil发布了新的文献求助10
2秒前
李进步发布了新的文献求助10
2秒前
小蘑菇应助淡淡菠萝采纳,获得10
2秒前
2秒前
2秒前
CAOHOU应助lycoris采纳,获得10
2秒前
leichun发布了新的文献求助10
4秒前
傻傻的芹菜完成签到,获得积分10
4秒前
snsut发布了新的文献求助10
4秒前
4秒前
5秒前
满意涵梅完成签到 ,获得积分10
5秒前
善良梦竹发布了新的文献求助10
5秒前
辛勤尔冬完成签到,获得积分10
5秒前
Akim应助123采纳,获得10
6秒前
HHHHH发布了新的文献求助10
6秒前
嘉人发布了新的文献求助10
6秒前
7秒前
ED应助俭朴的期待采纳,获得10
8秒前
中中中发布了新的文献求助200
8秒前
8秒前
平常的勒发布了新的文献求助10
8秒前
酷波er应助爬山虎采纳,获得10
8秒前
527发布了新的文献求助10
9秒前
Estella完成签到,获得积分10
10秒前
酷波er应助室内设计采纳,获得10
11秒前
fionaFDU完成签到,获得积分10
12秒前
13秒前
yy发布了新的文献求助10
13秒前
gejun完成签到,获得积分10
13秒前
13秒前
深情安青应助噗噗xie采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271