Traffic Flow Prediction Based on Interactive Dynamic Spatio-Temporal Graph Convolution with a Probabilistic Sparse Attention Mechanism

计算机科学 概率逻辑 块(置换群论) 图形 卷积(计算机科学) 人工智能 数据挖掘 算法 模式识别(心理学) 理论计算机科学 数学 人工神经网络 几何学
作者
Linlong Chen,Linbiao Chen,Hongyan Wang,Hong Zhang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (9): 837-853 被引量:2
标识
DOI:10.1177/03611981241230545
摘要

Accurate traffic flow prediction is of great practical significance to alleviate road congestion. Existing methods ignore the hidden dynamic associations between road nodes, and for the problem of difficulty capturing the dynamic spatio-temporal features of traffic flow in the prediction process, a novel model based on the interactive dynamic spatio-temporal graph convolutional probabilistic sparse attention mechanism (IDG-PSAtt) is proposed, which consists of an interactive dynamic graph convolutional network (IDGCN) structure with a spatio-temporal convolutional block (ST-Conv block) and a probabilistic sparse self-attention mechanism block (ProbSSAtt block). Among them, the IDGCN synchronizes the dynamic spatio-temporal features captured by interaction sharing, and the ST-Conv block is combined with the ProbSSAtt block to effectively capture the long short-term temporal features of the traffic flow. In addition, to effectively find the hidden dynamic associations between road network nodes, a dynamic graph convolutional network generated by the fusion of an adaptive neighbor matrix and a learnable neighbor matrix was constructed. Experimental results demonstrate that the prediction performance of the IDG-PSAtt model outperforms the baseline model under the evaluation criteria and experimental settings given in this paper. In the PEMS-BAY dataset, the mean absolute error and root mean square error of the IDG-PSAtt to 60 min are improved by 15.49% and 12.10%, compared with the state-of-the-art model, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山野完成签到,获得积分10
1秒前
熊大完成签到,获得积分10
1秒前
libz发布了新的文献求助10
1秒前
上进完成签到 ,获得积分10
1秒前
2秒前
超级的千青完成签到 ,获得积分10
2秒前
foceman发布了新的文献求助10
2秒前
pure123完成签到,获得积分10
3秒前
专注的问寒应助xxxx采纳,获得20
3秒前
量子星尘发布了新的文献求助10
3秒前
luan完成签到,获得积分10
3秒前
Udo完成签到,获得积分10
3秒前
3秒前
3秒前
叶子完成签到,获得积分10
4秒前
4秒前
4秒前
俏皮绝山完成签到 ,获得积分10
4秒前
4秒前
小马甲应助Glitter采纳,获得10
4秒前
weiwei发布了新的文献求助10
4秒前
小二郎应助aaa采纳,获得10
4秒前
唠叨的富发布了新的文献求助10
5秒前
Meyako应助sky木槿采纳,获得10
5秒前
zwq完成签到,获得积分10
5秒前
5秒前
大模型应助ww采纳,获得30
5秒前
自然的曲奇完成签到 ,获得积分10
6秒前
6秒前
凌爽完成签到 ,获得积分10
6秒前
6秒前
Hello应助zhaojiachao采纳,获得10
6秒前
7秒前
7秒前
领导范儿应助清欢采纳,获得10
7秒前
科研通AI6应助fxyfxy采纳,获得10
7秒前
7秒前
玉婷完成签到,获得积分10
7秒前
超级绫完成签到 ,获得积分10
7秒前
斯文败类应助zpctx采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721