亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Traffic Flow Prediction Based on Interactive Dynamic Spatio-Temporal Graph Convolution with a Probabilistic Sparse Attention Mechanism

计算机科学 概率逻辑 块(置换群论) 图形 卷积(计算机科学) 人工智能 数据挖掘 算法 模式识别(心理学) 理论计算机科学 数学 人工神经网络 几何学
作者
Linlong Chen,Linbiao Chen,Hongyan Wang,Hong Zhang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (9): 837-853 被引量:2
标识
DOI:10.1177/03611981241230545
摘要

Accurate traffic flow prediction is of great practical significance to alleviate road congestion. Existing methods ignore the hidden dynamic associations between road nodes, and for the problem of difficulty capturing the dynamic spatio-temporal features of traffic flow in the prediction process, a novel model based on the interactive dynamic spatio-temporal graph convolutional probabilistic sparse attention mechanism (IDG-PSAtt) is proposed, which consists of an interactive dynamic graph convolutional network (IDGCN) structure with a spatio-temporal convolutional block (ST-Conv block) and a probabilistic sparse self-attention mechanism block (ProbSSAtt block). Among them, the IDGCN synchronizes the dynamic spatio-temporal features captured by interaction sharing, and the ST-Conv block is combined with the ProbSSAtt block to effectively capture the long short-term temporal features of the traffic flow. In addition, to effectively find the hidden dynamic associations between road network nodes, a dynamic graph convolutional network generated by the fusion of an adaptive neighbor matrix and a learnable neighbor matrix was constructed. Experimental results demonstrate that the prediction performance of the IDG-PSAtt model outperforms the baseline model under the evaluation criteria and experimental settings given in this paper. In the PEMS-BAY dataset, the mean absolute error and root mean square error of the IDG-PSAtt to 60 min are improved by 15.49% and 12.10%, compared with the state-of-the-art model, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
ersheng发布了新的文献求助10
5秒前
Richard完成签到 ,获得积分10
16秒前
27秒前
52秒前
乐乐应助科研通管家采纳,获得10
58秒前
58秒前
隐形曼青应助科研通管家采纳,获得10
58秒前
科研通AI6应助doublenine18采纳,获得30
1分钟前
1分钟前
SciGPT应助ODN采纳,获得10
1分钟前
Andy完成签到,获得积分10
1分钟前
健壮惋清完成签到 ,获得积分10
2分钟前
LEETHEO完成签到,获得积分10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
可爱寻芹发布了新的文献求助10
3分钟前
劉浏琉完成签到,获得积分10
3分钟前
zhjl完成签到,获得积分10
3分钟前
shadow完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
ODN发布了新的文献求助10
5分钟前
Akim应助朱羊羊采纳,获得10
5分钟前
doublenine18发布了新的文献求助30
5分钟前
我哪知道怎么完成签到 ,获得积分10
6分钟前
ling发布了新的文献求助10
6分钟前
乐乐应助火速阿百川采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
凸凸发布了新的文献求助10
7分钟前
今后应助凸凸采纳,获得10
8分钟前
怪僻完成签到 ,获得积分10
8分钟前
AJ完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639688
求助须知:如何正确求助?哪些是违规求助? 4749790
关于积分的说明 15007137
捐赠科研通 4797851
什么是DOI,文献DOI怎么找? 2563972
邀请新用户注册赠送积分活动 1522849
关于科研通互助平台的介绍 1482518