Traffic Flow Prediction Based on Interactive Dynamic Spatio-Temporal Graph Convolution with a Probabilistic Sparse Attention Mechanism

计算机科学 概率逻辑 块(置换群论) 图形 卷积(计算机科学) 人工智能 数据挖掘 算法 模式识别(心理学) 理论计算机科学 数学 人工神经网络 几何学
作者
Linlong Chen,Linbiao Chen,Hongyan Wang,Hong Zhang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (9): 837-853 被引量:2
标识
DOI:10.1177/03611981241230545
摘要

Accurate traffic flow prediction is of great practical significance to alleviate road congestion. Existing methods ignore the hidden dynamic associations between road nodes, and for the problem of difficulty capturing the dynamic spatio-temporal features of traffic flow in the prediction process, a novel model based on the interactive dynamic spatio-temporal graph convolutional probabilistic sparse attention mechanism (IDG-PSAtt) is proposed, which consists of an interactive dynamic graph convolutional network (IDGCN) structure with a spatio-temporal convolutional block (ST-Conv block) and a probabilistic sparse self-attention mechanism block (ProbSSAtt block). Among them, the IDGCN synchronizes the dynamic spatio-temporal features captured by interaction sharing, and the ST-Conv block is combined with the ProbSSAtt block to effectively capture the long short-term temporal features of the traffic flow. In addition, to effectively find the hidden dynamic associations between road network nodes, a dynamic graph convolutional network generated by the fusion of an adaptive neighbor matrix and a learnable neighbor matrix was constructed. Experimental results demonstrate that the prediction performance of the IDG-PSAtt model outperforms the baseline model under the evaluation criteria and experimental settings given in this paper. In the PEMS-BAY dataset, the mean absolute error and root mean square error of the IDG-PSAtt to 60 min are improved by 15.49% and 12.10%, compared with the state-of-the-art model, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elsa完成签到,获得积分10
1秒前
无谓完成签到,获得积分10
1秒前
科研通AI6应助薄荷采纳,获得10
1秒前
Andy完成签到 ,获得积分10
1秒前
wushuwen发布了新的文献求助20
1秒前
11完成签到,获得积分10
2秒前
love完成签到,获得积分20
2秒前
cyd2007cyd发布了新的文献求助10
2秒前
巴拉巴拉完成签到,获得积分10
2秒前
iTaciturne完成签到,获得积分10
3秒前
qqq完成签到,获得积分10
3秒前
wanci应助忧郁小胖蛋采纳,获得10
3秒前
JazzWon完成签到,获得积分10
3秒前
华姝发布了新的文献求助20
3秒前
3秒前
华仔应助安安采纳,获得10
4秒前
lxy发布了新的文献求助10
4秒前
敏1997发布了新的文献求助10
4秒前
fionaFDU完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
共享精神应助失眠双双采纳,获得10
6秒前
6秒前
赘婿应助qqqqqq采纳,获得10
6秒前
luckydong完成签到 ,获得积分10
6秒前
7秒前
7秒前
科目三应助Jepping_Zhu采纳,获得10
7秒前
乐乐应助king采纳,获得10
7秒前
善学以致用应助水生的鱼采纳,获得10
7秒前
桐桐应助热心的白翠采纳,获得10
8秒前
苹果绣连发布了新的文献求助20
8秒前
赘婿应助XA采纳,获得10
8秒前
华姝完成签到,获得积分10
8秒前
9秒前
9秒前
Kyrie完成签到 ,获得积分10
9秒前
在水一方应助duan925采纳,获得10
9秒前
CodeCraft应助赵一博主采纳,获得10
9秒前
糖焗小馒头完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665478
求助须知:如何正确求助?哪些是违规求助? 4876942
关于积分的说明 15114156
捐赠科研通 4824747
什么是DOI,文献DOI怎么找? 2582871
邀请新用户注册赠送积分活动 1536832
关于科研通互助平台的介绍 1495350