CF-GCN: Graph Convolutional Network for Change Detection in Remote Sensing Images

计算机科学 遥感 图形 人工智能 地质学 理论计算机科学
作者
Wei Wang,Cong Liu,Guanqun Liu,Xin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2024.3357085
摘要

The remote sensing image change detection methods based on deep learning have made great progress.However, many CNN-based methods persistently face challenges in connecting long-range semantic concepts because of their limited receptive fields. Recently, some methods that combine transformers effectively extract global information by modeling the context in the temporal and spatial domains has been proposed to solve the problem, but they still suffer from both the incorrect identification of "non-semantic changes" and the incomplete and irregular boundary extraction due to the deterioration of local feature details. In response to these inquiries, we propose a novel network, CF-GCN, based on graph convolutional structures for change detection. Specifically, in the encoder and decoder of the network, different projection strategies are employed to construct coordinate space graph convolution and feature interaction graph convolution. The Boundary Perception Module extracts spatial boundary features of shallow layers and enhances boundary perception ability during graph-based information propagation, effectively suppressing the tendency of image boundary information to gradually smooth out. At the same time, the knowledge review module is utilized to form knowledge complementarity between key layers of the network, effectively mitigating the propagation of erroneous knowledge in the deep network. On the LEVIR-CD dataset, the IoU score of CF-GCN is 83.41%, which is 0.35% and 0.39% higher than ChangeStar and DMINet, respectively. On the WHU-CD dataset, the F1 and IoU are as high as 91.83% and 84.90%, which are significantly better than other state-of-the-art networks. The experimental results show that, in addition to CNN and Transformer, the graph-convolution structure approach is expected to be another major research direction for performing fully supervised change detection. Our code and pre-trained models will be available at https://github.com/liucongcharles/CF-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meizi0109发布了新的文献求助10
刚刚
ding应助优雅的雁凡采纳,获得10
刚刚
刚刚
sparks完成签到,获得积分10
刚刚
黄大师发布了新的文献求助10
1秒前
SciGPT应助白小施采纳,获得10
1秒前
矮小的小珍完成签到,获得积分10
1秒前
1秒前
可爱的函函应助小董不懂采纳,获得10
2秒前
2秒前
常常发布了新的文献求助10
2秒前
烟花应助王彬采纳,获得10
2秒前
CrazyLion完成签到,获得积分10
2秒前
2秒前
殷昭慧发布了新的文献求助10
3秒前
3秒前
英勇电脑完成签到,获得积分10
3秒前
牛洋洋完成签到,获得积分10
4秒前
zyp完成签到,获得积分10
4秒前
www发布了新的文献求助10
4秒前
TAO发布了新的文献求助10
4秒前
4秒前
5秒前
上好佳发布了新的文献求助10
5秒前
biubiufan发布了新的文献求助10
6秒前
6秒前
我爱Chem完成签到 ,获得积分10
6秒前
6秒前
清脆的惜雪完成签到,获得积分20
6秒前
黄大师完成签到,获得积分10
7秒前
8秒前
9秒前
兰陵萧笑声完成签到,获得积分10
9秒前
Owen应助鑫鑫努力学习采纳,获得10
9秒前
9秒前
9秒前
刻苦的皮卡丘完成签到,获得积分10
9秒前
柔弱紊发布了新的文献求助10
10秒前
领导范儿应助殷昭慧采纳,获得10
10秒前
10秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251