Machine learning analysis of human skin by optoacoustic mesoscopy for automated extraction of psoriasis and aging biomarkers

卷积神经网络 分割 深度学习 计算机科学 人工智能 模式识别(心理学)
作者
Hailong He,Johannes C. Paetzold,Nils Börner,Ed Riedel,Stefan Gerl,Simon Schneider,Clemency Fisher,Ivan Ezhov,Suprosanna Shit,Hongwei Bran Li,Daniel Rueckert,Juan Aguirre,Tilo Biedermann,Ulf Darsow,Bjoern H. Menze,Vasilis Ntziachristos
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3356180
摘要

Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gc完成签到 ,获得积分10
刚刚
求思东观令完成签到,获得积分10
刚刚
追寻筮完成签到,获得积分10
1秒前
清神安发布了新的文献求助10
1秒前
1秒前
qq发布了新的文献求助10
2秒前
2秒前
zewangguo发布了新的文献求助10
3秒前
难过的疾完成签到,获得积分10
4秒前
lvsehx完成签到,获得积分10
5秒前
小远发布了新的文献求助10
5秒前
雪花完成签到 ,获得积分10
6秒前
给刘宇宁的粉丝一篇文献吧完成签到,获得积分10
8秒前
小蘑菇应助lvsehx采纳,获得10
8秒前
8秒前
白日梦发布了新的文献求助10
8秒前
9秒前
11秒前
深情安青应助Yy杨优秀采纳,获得10
12秒前
12秒前
浩淼发布了新的文献求助10
13秒前
指定能行发布了新的文献求助10
14秒前
爵士黄瓜发布了新的文献求助10
15秒前
16秒前
16秒前
梦里寻发布了新的文献求助30
17秒前
17秒前
19秒前
20秒前
充电宝应助Yuki采纳,获得10
20秒前
小白白发布了新的文献求助10
20秒前
20秒前
落后紫菜发布了新的文献求助10
20秒前
睡觉大王完成签到 ,获得积分10
21秒前
21秒前
myduty完成签到 ,获得积分10
22秒前
ukmy发布了新的文献求助10
25秒前
酷酷一笑发布了新的文献求助10
25秒前
英俊月饼发布了新的文献求助10
26秒前
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980408
求助须知:如何正确求助?哪些是违规求助? 3524319
关于积分的说明 11220990
捐赠科研通 3261764
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879424
科研通“疑难数据库(出版商)”最低求助积分说明 807261