Machine learning analysis of human skin by optoacoustic mesoscopy for automated extraction of psoriasis and aging biomarkers

卷积神经网络 分割 深度学习 计算机科学 人工智能 模式识别(心理学)
作者
Hailong He,Johannes C. Paetzold,Nils Börner,Ed Riedel,Stefan Gerl,Simon Schneider,Clemency Fisher,Ivan Ezhov,Suprosanna Shit,Hongwei Bran Li,Daniel Rueckert,Juan Aguirre,Tilo Biedermann,Ulf Darsow,Bjoern H. Menze,Vasilis Ntziachristos
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3356180
摘要

Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Sam十九采纳,获得10
1秒前
我是老大应助徐嘎嘎采纳,获得20
1秒前
2秒前
所所应助北风采纳,获得10
2秒前
2秒前
乐乐应助yuna采纳,获得10
3秒前
shuhe发布了新的文献求助10
3秒前
11关闭了11文献求助
3秒前
ding应助黎明之光采纳,获得20
4秒前
YaoHui发布了新的文献求助20
4秒前
5秒前
情怀应助皮卡丘采纳,获得10
6秒前
yar给重生之我来找文献的求助进行了留言
6秒前
7秒前
stuckinrain发布了新的文献求助10
7秒前
7秒前
齐柏z完成签到,获得积分10
7秒前
我服有点黑给我服有点黑的求助进行了留言
8秒前
无花果应助wg采纳,获得10
9秒前
10秒前
10秒前
Amber完成签到,获得积分20
10秒前
10秒前
10秒前
13秒前
浮游应助wangbq采纳,获得10
14秒前
14秒前
852应助腼腆的绿兰采纳,获得10
14秒前
kily发布了新的文献求助10
15秒前
北风发布了新的文献求助10
15秒前
Hello应助范峰源采纳,获得10
16秒前
和褪黑素说晚安完成签到 ,获得积分10
16秒前
兰佳璇完成签到,获得积分10
16秒前
Catherine_Song完成签到,获得积分10
17秒前
17秒前
18秒前
hyx发布了新的文献求助10
18秒前
123study0完成签到,获得积分10
18秒前
hxldsb发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308276
求助须知:如何正确求助?哪些是违规求助? 4453483
关于积分的说明 13857227
捐赠科研通 4341210
什么是DOI,文献DOI怎么找? 2383705
邀请新用户注册赠送积分活动 1378353
关于科研通互助平台的介绍 1346311