Machine learning analysis of human skin by optoacoustic mesoscopy for automated extraction of psoriasis and aging biomarkers

卷积神经网络 分割 深度学习 计算机科学 人工智能 模式识别(心理学)
作者
Hailong He,Johannes C. Paetzold,Nils Börner,Ed Riedel,Stefan Gerl,Simon Schneider,Clemency Fisher,Ivan Ezhov,Suprosanna Shit,Hongwei Bran Li,Daniel Rueckert,Juan Aguirre,Tilo Biedermann,Ulf Darsow,Bjoern H. Menze,Vasilis Ntziachristos
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3356180
摘要

Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴子发布了新的文献求助10
刚刚
刚刚
zxynepu完成签到,获得积分10
刚刚
与枫完成签到,获得积分10
刚刚
思源应助科研小白采纳,获得10
刚刚
香蕉觅云应助高贵的斑马采纳,获得10
1秒前
乐乐应助小庄采纳,获得10
1秒前
隐形曼青应助杜寒采纳,获得10
2秒前
牛牛发布了新的文献求助10
2秒前
火星上的毛豆完成签到,获得积分10
3秒前
Xiaoping发布了新的文献求助10
3秒前
玳瑁猫发布了新的文献求助10
4秒前
在水一方应助啦啦啦采纳,获得10
4秒前
8R60d8应助bear采纳,获得10
4秒前
5秒前
m方完成签到,获得积分10
5秒前
DrD发布了新的文献求助10
5秒前
daling发布了新的文献求助10
5秒前
奋斗芒果发布了新的文献求助10
5秒前
5秒前
ssw完成签到,获得积分10
5秒前
勇往直前完成签到,获得积分10
5秒前
小李完成签到,获得积分10
6秒前
年轻的咖啡豆完成签到,获得积分20
7秒前
看得见啊离开家完成签到,获得积分10
8秒前
晕晕完成签到,获得积分10
8秒前
9秒前
9秒前
金土豆发布了新的文献求助10
9秒前
抵澳报了完成签到,获得积分10
9秒前
bgt完成签到 ,获得积分10
10秒前
陈一晨完成签到 ,获得积分10
10秒前
bear发布了新的文献求助10
10秒前
10秒前
Zymiao发布了新的文献求助10
10秒前
王讯完成签到,获得积分10
11秒前
太麻烦了啦完成签到,获得积分10
11秒前
怡然友安发布了新的文献求助20
12秒前
情怀应助Doctor_Mill采纳,获得10
12秒前
中西西完成签到 ,获得积分10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257738
求助须知:如何正确求助?哪些是违规求助? 2899561
关于积分的说明 8306743
捐赠科研通 2568802
什么是DOI,文献DOI怎么找? 1395357
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630837