Machine learning analysis of human skin by optoacoustic mesoscopy for automated extraction of psoriasis and aging biomarkers

卷积神经网络 分割 深度学习 计算机科学 人工智能 模式识别(心理学)
作者
Hailong He,Johannes C. Paetzold,Nils Börner,Ed Riedel,Stefan Gerl,Simon Schneider,Clemency Fisher,Ivan Ezhov,Suprosanna Shit,Hongwei Bran Li,Daniel Rueckert,Juan Aguirre,Tilo Biedermann,Ulf Darsow,Bjoern H. Menze,Vasilis Ntziachristos
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3356180
摘要

Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助YF采纳,获得10
刚刚
游悠悠发布了新的文献求助10
1秒前
1秒前
风趣飞柏发布了新的文献求助10
1秒前
han发布了新的文献求助10
1秒前
劳恩特应助熊芳妮采纳,获得30
2秒前
wangyang完成签到 ,获得积分10
2秒前
2秒前
爆米花应助tao采纳,获得80
2秒前
2秒前
小心胖虎完成签到,获得积分20
3秒前
3秒前
dong0511发布了新的文献求助10
4秒前
共享精神应助小张医生采纳,获得10
5秒前
bkagyin应助jy采纳,获得30
5秒前
5秒前
6秒前
6秒前
LIKO完成签到,获得积分10
7秒前
8秒前
8秒前
Yiyyan发布了新的文献求助30
8秒前
搜集达人应助小鲤鱼本鱼采纳,获得10
9秒前
古枂完成签到,获得积分10
9秒前
舒适花瓣完成签到,获得积分10
10秒前
情怀应助蝶步韶华采纳,获得10
10秒前
10秒前
junjunjun发布了新的文献求助10
11秒前
xzlijingjing发布了新的文献求助10
11秒前
11秒前
子忧发布了新的文献求助10
12秒前
12秒前
mdomse2109完成签到,获得积分10
13秒前
alisa完成签到 ,获得积分20
13秒前
14秒前
112发布了新的文献求助10
14秒前
1851611453完成签到 ,获得积分10
15秒前
眉洛完成签到,获得积分10
16秒前
传奇3应助灵山剑侠采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294