Precise Synthesis of 4.75 V-Tolerant LiCoO2 with Homogeneous Delithiation and Reduced Internal Strain

化学 同种类的 拉伤 化学工程 热力学 矿物学 医学 物理 内科学 工程类
作者
Jianqi Zhang,Weiyuan Huang,Jiayi Tang,Zhaoguo Liu,Chuanchao Sheng,Xinyi Sun,Hanyun Zhong,Sheng Xu,Wenjie Ning,Xianghui Xiao,Tongchao Liu,Shaohua Guo,Haoshen Zhou
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c10976
摘要

The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO2 to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO2 are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li+ intercalation/deintercalation reactions. Herein, employing the molten-salt synthesis technique, we propose a universal morphology-shaping strategy to attain bulk reaction homogeneity and reduce internal strains, even at extremely high charge voltages. The newly designed flattened polygon prismlike LiCoO2 (P-LCO) particle, featuring a regular symmetrical arrangement along the c-axis, demonstrates a more homogeneous Li+ extraction/insertion reaction, which results in a restrained transformation to detrimental O1 phase and reduced variation in lattice volume throughout the (de)lithiation processes. This benefits the mitigation of the local stress accumulation misfit dislocations and particle cracking, ultimately maintaining the mechanical stability of the cathode. Consequently, P-LCO is capable of breaking the voltage ceiling and exhibits exceptional long-term cycling capability at an ultrahigh voltage of 4.75 V. This work offers a brand-new perspective for the rational design of cathode morphology to address capacity deterioration caused by inhomogeneous delithiation and internal strain, thus inspiring the development of high-energy-density cathodes with improved durability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
赘婿应助孤独阑香采纳,获得10
3秒前
小鱼发布了新的文献求助10
4秒前
洁净的半鬼完成签到,获得积分10
4秒前
化学y完成签到,获得积分10
4秒前
4秒前
illion1发布了新的文献求助10
5秒前
6秒前
巫马尔槐完成签到,获得积分10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
黑白应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
xihuanni发布了新的文献求助10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
liuUU应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得20
8秒前
zanilia应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
田様应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
杳鸢应助科研通管家采纳,获得50
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
万能图书馆应助装好心采纳,获得10
9秒前
tang发布了新的文献求助10
10秒前
smallsix完成签到,获得积分20
11秒前
苗轩发布了新的文献求助10
12秒前
斯丹康完成签到,获得积分10
13秒前
良辰应助英勇的曼岚采纳,获得30
15秒前
风来枫去完成签到,获得积分10
15秒前
李健的小迷弟应助add采纳,获得10
15秒前
思源应助姜敏敏采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283