A normal cloud model-based decision making method under multi-granular probabilistic linguistic environment for evaluating of wetland ecosystem services

概率逻辑 计算机科学 排名(信息检索) 湿地 云计算 秩(图论) 度量(数据仓库) 数据挖掘 人工智能 生态学 数学 组合数学 生物 操作系统
作者
Ling Weng,Jian Lin,Zhangxu Lin,Xu Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120202-120202 被引量:7
标识
DOI:10.1016/j.eswa.2023.120202
摘要

An accurate understanding of wetlands and the various functions they provide to humans through the evaluation of wetland ecosystem services values (WESVs) is essential for the rational and effective management of wetlands. In practice, obtaining quantitative data on wetlands is a challenge. Therefore, a new and systematic multi-attribute group decision-making method (MAGDM) was constructed. After collecting WESV probabilistic linguistic evaluation data from multiple experts, the method was used to compare and rank wetlands with known data and wetlands with unknown data, so as to indirectly obtain WESV evaluation. Specifically, the concept of multi-granular probabilistic linguistic cloud (MPLC) with its basic algorithm, deviation measure, and cloud information fusion tool is first presented. It is used to deal with the problem of multi-granular linguistic information due to the different knowledge backgrounds of experts. Secondly, two models for determining attribute weights and expert weights are constructed to provide solutions to the problem of unknown weight information. By improving the final ranking method of the MULTIMOORA method and taking into account the risk-averse psychological activities of the experts, the prospect theory-based MULTIMOORA method under cloud environment is proposed. Finally, some wetlands are used as examples to demonstrate the applicability of the constructed MAGDM method. The simulation results show that the proposed method is computationally more straightforward and robust than before, and the basic idea is logical and understandable. In addition, corresponding sensitivity and comparative analyses were further conducted to demonstrate the superiority and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶渊明发布了新的文献求助10
刚刚
Ploaris发布了新的文献求助10
1秒前
青山发布了新的文献求助10
1秒前
1秒前
隐形曼青应助小蒋采纳,获得10
2秒前
3秒前
顾矜应助zy采纳,获得30
4秒前
5秒前
5秒前
YahuiZhou发布了新的文献求助10
5秒前
6秒前
淡淡的板凳完成签到 ,获得积分10
6秒前
6秒前
jevon应助外向若剑采纳,获得10
7秒前
善学以致用应助小运佳采纳,获得30
7秒前
7秒前
研友_VZGvVn发布了新的文献求助10
8秒前
小周同学发布了新的文献求助10
8秒前
酷波er应助111采纳,获得30
9秒前
miamia77应助wsqg123采纳,获得10
9秒前
9秒前
10秒前
10秒前
李喜喜发布了新的文献求助10
11秒前
BJiAr完成签到,获得积分10
12秒前
一一应助坚定龙猫采纳,获得50
12秒前
史尔美发布了新的文献求助10
12秒前
13秒前
14秒前
阿牛奶发布了新的文献求助10
14秒前
研友_VZGvVn完成签到,获得积分10
14秒前
访云发布了新的文献求助10
14秒前
赫若魔完成签到,获得积分10
14秒前
LSY发布了新的文献求助10
14秒前
丁昆发布了新的文献求助10
15秒前
研友_LOoomL发布了新的文献求助10
15秒前
脆脆鲨发布了新的文献求助20
15秒前
可爱的函函应助YahuiZhou采纳,获得10
15秒前
16秒前
赘婿应助王晓风采纳,获得30
16秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222817
求助须知:如何正确求助?哪些是违规求助? 2871641
关于积分的说明 8176254
捐赠科研通 2538573
什么是DOI,文献DOI怎么找? 1370638
科研通“疑难数据库(出版商)”最低求助积分说明 645828
邀请新用户注册赠送积分活动 619710