亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A normal cloud model-based decision making method under multi-granular probabilistic linguistic environment for evaluating of wetland ecosystem services

概率逻辑 计算机科学 排名(信息检索) 湿地 云计算 秩(图论) 度量(数据仓库) 数据挖掘 人工智能 生态学 数学 组合数学 生物 操作系统
作者
Ling Weng,Jian Lin,Zhangxu Lin,Zeshui Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120202-120202 被引量:13
标识
DOI:10.1016/j.eswa.2023.120202
摘要

An accurate understanding of wetlands and the various functions they provide to humans through the evaluation of wetland ecosystem services values (WESVs) is essential for the rational and effective management of wetlands. In practice, obtaining quantitative data on wetlands is a challenge. Therefore, a new and systematic multi-attribute group decision-making method (MAGDM) was constructed. After collecting WESV probabilistic linguistic evaluation data from multiple experts, the method was used to compare and rank wetlands with known data and wetlands with unknown data, so as to indirectly obtain WESV evaluation. Specifically, the concept of multi-granular probabilistic linguistic cloud (MPLC) with its basic algorithm, deviation measure, and cloud information fusion tool is first presented. It is used to deal with the problem of multi-granular linguistic information due to the different knowledge backgrounds of experts. Secondly, two models for determining attribute weights and expert weights are constructed to provide solutions to the problem of unknown weight information. By improving the final ranking method of the MULTIMOORA method and taking into account the risk-averse psychological activities of the experts, the prospect theory-based MULTIMOORA method under cloud environment is proposed. Finally, some wetlands are used as examples to demonstrate the applicability of the constructed MAGDM method. The simulation results show that the proposed method is computationally more straightforward and robust than before, and the basic idea is logical and understandable. In addition, corresponding sensitivity and comparative analyses were further conducted to demonstrate the superiority and effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助香菜肉丸采纳,获得10
1秒前
11秒前
平淡映秋发布了新的文献求助10
14秒前
focus完成签到 ,获得积分10
15秒前
香菜肉丸发布了新的文献求助10
18秒前
28秒前
37秒前
48秒前
58秒前
犬来八荒发布了新的文献求助10
58秒前
simple1完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Cherry发布了新的文献求助10
1分钟前
charih完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助犬来八荒采纳,获得10
1分钟前
1分钟前
1分钟前
ding应助小橘子吃傻子采纳,获得10
1分钟前
1分钟前
Tania完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
辉辉应助科研通管家采纳,获得10
3分钟前
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
wanci应助Tingshuo采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091