A normal cloud model-based decision making method under multi-granular probabilistic linguistic environment for evaluating of wetland ecosystem services

概率逻辑 计算机科学 排名(信息检索) 湿地 云计算 秩(图论) 度量(数据仓库) 数据挖掘 人工智能 生态学 数学 组合数学 生物 操作系统
作者
Ling Weng,Jian Lin,Zhangxu Lin,Zeshui Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120202-120202 被引量:13
标识
DOI:10.1016/j.eswa.2023.120202
摘要

An accurate understanding of wetlands and the various functions they provide to humans through the evaluation of wetland ecosystem services values (WESVs) is essential for the rational and effective management of wetlands. In practice, obtaining quantitative data on wetlands is a challenge. Therefore, a new and systematic multi-attribute group decision-making method (MAGDM) was constructed. After collecting WESV probabilistic linguistic evaluation data from multiple experts, the method was used to compare and rank wetlands with known data and wetlands with unknown data, so as to indirectly obtain WESV evaluation. Specifically, the concept of multi-granular probabilistic linguistic cloud (MPLC) with its basic algorithm, deviation measure, and cloud information fusion tool is first presented. It is used to deal with the problem of multi-granular linguistic information due to the different knowledge backgrounds of experts. Secondly, two models for determining attribute weights and expert weights are constructed to provide solutions to the problem of unknown weight information. By improving the final ranking method of the MULTIMOORA method and taking into account the risk-averse psychological activities of the experts, the prospect theory-based MULTIMOORA method under cloud environment is proposed. Finally, some wetlands are used as examples to demonstrate the applicability of the constructed MAGDM method. The simulation results show that the proposed method is computationally more straightforward and robust than before, and the basic idea is logical and understandable. In addition, corresponding sensitivity and comparative analyses were further conducted to demonstrate the superiority and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级的雁山完成签到,获得积分10
刚刚
刚刚
大块发布了新的文献求助10
刚刚
刚刚
CodeCraft应助Jyouang采纳,获得30
1秒前
小刚发布了新的文献求助10
1秒前
洋洋洋发布了新的文献求助10
1秒前
调皮以筠发布了新的文献求助10
1秒前
小仙女完成签到,获得积分10
1秒前
华仔应助王楷楷采纳,获得10
2秒前
Maestro_S应助清脆的夜白采纳,获得10
2秒前
答辩完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
小二郎应助偏偏海采纳,获得10
4秒前
离蒲完成签到 ,获得积分10
5秒前
贝塔的贝塔完成签到,获得积分10
5秒前
5秒前
Jiping Ni发布了新的文献求助20
5秒前
5秒前
wdp完成签到,获得积分10
6秒前
吴学仕发布了新的文献求助30
6秒前
7秒前
7秒前
cckk完成签到,获得积分10
7秒前
王欣完成签到 ,获得积分10
7秒前
8秒前
wusin发布了新的文献求助20
8秒前
9秒前
刚睡醒发布了新的文献求助10
9秒前
Crazyhhb完成签到,获得积分20
9秒前
zahngyacheng完成签到,获得积分20
10秒前
10秒前
jj发布了新的文献求助20
10秒前
张迪完成签到,获得积分10
10秒前
九月发布了新的文献求助10
10秒前
10秒前
xxy发布了新的文献求助10
10秒前
九月发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277