Digital twin forecasting of microwave ablation via fat quantification image-to-grid computational methods

烧蚀 微波消融 医学 生物医学工程 计算机科学 放射科 内科学
作者
Frankangel Servin,Jarrod A. Collins,Jon S. Heiselman,Katherine Frederick-Dyer,Virginia B. Planz,Sunil K. Geevarghese,Daniel B. Brown,Michael I. Miga
标识
DOI:10.1117/12.2655257
摘要

Computational tools, such as "digital twin" modeling, are beginning to enable patient-specific surgical planning of ablative therapies to treat hepatocellular carcinoma. Digital twins models use patient functional data and biomarker imaging to build anatomically accurate models to forecast therapeutic outcomes through simulation, i.e., providing accurate information for guiding clinical decision-making. In microwave ablation (MWA), tissue-specific factors (e.g., tissue perfusion, material properties, disease state, etc.) can affect ablative therapies, but current thermal dosing guidelines do not account for these differences. This study establishes an imaging-data-driven framework to construct digital twin biophysical models to predict ablation extents in livers with varying fat content in MWA. Patient anatomic scans were segmented to develop customized three-dimensional computational biophysical models, and fat-quantification images were acquired to reconstruct spatially accurate biophysical material properties. Simulated patient-specific microwave ablations of homogenous digital-twin models (control) and enhanced digital twin models were performed at four levels of fatty liver disease. When looking at the short diameter (SD), long diameter (LD), ablation volume, and spherical index of the ablation margins - the heterogenous digital-twin models did not produce significantly different ablation margins compared to the control models. Both models produced results that report ablation margins for patients with high-fat livers are larger than low-fat livers (LD of 6.17cm vs. 6.30cm and SD of 2.10 vs. 1.99, respectively). Overall, the results suggest that modeling heterogeneous clinical fatty liver disease using fat-quantitative imaging data has the potential to improve patient specificity for this treatment modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助LJHUA采纳,获得10
刚刚
斯文败类应助橙子采纳,获得10
刚刚
刚刚
123_应助科演小能手采纳,获得10
1秒前
李梦发布了新的文献求助10
1秒前
2秒前
南枫发布了新的文献求助10
3秒前
3秒前
迷茫发布了新的文献求助10
3秒前
3秒前
3秒前
赘婿应助自觉的笑寒采纳,获得10
4秒前
高手完成签到,获得积分10
4秒前
Mr_X发布了新的文献求助10
4秒前
缥缈夏彤完成签到,获得积分10
5秒前
bkagyin应助devoel采纳,获得10
5秒前
彭于晏应助aliu采纳,获得10
5秒前
小木棉完成签到 ,获得积分10
5秒前
大海风发布了新的文献求助20
6秒前
隐形曼青应助pianoboy采纳,获得10
7秒前
lovexy发布了新的文献求助10
7秒前
好好学就能演完成签到,获得积分10
7秒前
乖乖君完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
kingwill应助111采纳,获得20
11秒前
古果完成签到,获得积分10
11秒前
拼搏诗翠发布了新的文献求助10
12秒前
赘婿应助不吃香菜采纳,获得10
12秒前
12秒前
12秒前
脑洞疼应助Mr_X采纳,获得10
13秒前
一个千年猪妖完成签到,获得积分10
13秒前
西瓜刀发布了新的文献求助20
14秒前
古果发布了新的文献求助10
14秒前
英俊的铭应助goinggo采纳,获得10
15秒前
今后应助yaya采纳,获得10
15秒前
Zurlliant发布了新的文献求助10
16秒前
hp发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748491
求助须知:如何正确求助?哪些是违规求助? 3291508
关于积分的说明 10073402
捐赠科研通 3007382
什么是DOI,文献DOI怎么找? 1651565
邀请新用户注册赠送积分活动 786479
科研通“疑难数据库(出版商)”最低求助积分说明 751752