tUbe net: a generalisable deep learning tool for 3D vessel segmentation

深度学习 计算机科学 卷积神经网络 人工智能 基本事实 分割 模态(人机交互) 模式 试验装置 任务(项目管理) 注释 体积热力学 集合(抽象数据类型) 数据集 机器学习 人工神经网络 软件 社会科学 物理 管理 量子力学 社会学 经济 程序设计语言
作者
Natalie Holroyd,Zhongwang Li,Claire Walsh,Emmeline Brown,Rebecca J. Shipley,Simon Walker‐Samuel
标识
DOI:10.1101/2023.07.24.550334
摘要

Abstract Deep learning has become an invaluable tool for bioimage analysis but, while open-source cell annotation software such as cellpose are widely used, an equivalent tool for three-dimensional (3D) vascular annotation does not exist. With the vascular system being directly impacted by a broad range of diseases, there is significant medical interest in quantitative analysis for vascular imaging. However, existing deep learning approaches for this task are specialised to particular tissue types or imaging modalities. We present a new deep learning model for segmentation of vasculature that is generalisable across tissues, modalities, scales and pathologies. To create a generalisable model, a 3D convolutional neural network was trained using data from multiple modalities including optical imaging, computational tomography and photoacoustic imaging. Through this varied training set, the model was forced to learn common features of vessels cross-modality and scale. Following this, the general model was fine-tuned to different applications with a minimal amount of manually labelled ground truth data. It was found that the general model could be specialised to segment new datasets, with a high degree of accuracy, using as little as 0.3% of the volume of that dataset for fine-tuning. As such, this model enables users to produce accurate segmentations of 3D vascular networks without the need to label large amounts of training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助......采纳,获得10
1秒前
粥粥完成签到 ,获得积分10
4秒前
键盘车神完成签到 ,获得积分10
4秒前
咳欧克完成签到,获得积分20
5秒前
5秒前
14秒前
辛辛应助科研通管家采纳,获得10
18秒前
辛辛应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
辛辛应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
sskk发布了新的文献求助10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
18秒前
20秒前
嗯嗯发布了新的文献求助10
21秒前
个性跳跳糖完成签到,获得积分10
21秒前
祎橘完成签到 ,获得积分10
24秒前
昏睡的白桃完成签到,获得积分10
24秒前
关中人完成签到,获得积分10
25秒前
舒服的山槐完成签到,获得积分10
25秒前
......发布了新的文献求助10
26秒前
xyh完成签到,获得积分10
27秒前
Sea_U应助意安在采纳,获得10
27秒前
happyccch完成签到,获得积分10
29秒前
上官若男应助学术蝗虫采纳,获得10
31秒前
王圆圆完成签到 ,获得积分10
31秒前
NexusExplorer应助lucky采纳,获得10
33秒前
ding应助sdl采纳,获得10
33秒前
FashionBoy应助......采纳,获得10
33秒前
orixero应助嗯嗯采纳,获得10
35秒前
Hello应助鸳鸯不是鸳鸯采纳,获得10
35秒前
frederick完成签到,获得积分10
39秒前
39秒前
阿飘应助submarines采纳,获得20
40秒前
41秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774441
求助须知:如何正确求助?哪些是违规求助? 3320155
关于积分的说明 10198712
捐赠科研通 3034786
什么是DOI,文献DOI怎么找? 1665211
邀请新用户注册赠送积分活动 796703
科研通“疑难数据库(出版商)”最低求助积分说明 757552