Massive Geomodel Compression and Rapid Geomodel Generation Using Advanced Autoencoders and Autoregressive Neural Networks

自编码 自回归模型 计算机科学 人工智能 模式识别(心理学) 压缩比 压缩(物理) 数据压缩 人工神经网络 深度学习 降维 还原(数学) 算法 数学 统计 工程类 复合材料 汽车工程 几何学 材料科学 内燃机
作者
Siddharth Misra,Jungang Chen,Yusuf Falola,Polina Churilova,Chung-Kan Huang,Jose F. Delgado
标识
DOI:10.2118/214442-ms
摘要

Abstract The reduction of computational cost when using large geomodels requires low-dimensional representations (transformation or reparameterization) of large geomodels, which need to be computed using fast and robust dimensionality reduction methods. Additionally, to reduce the uncertainty associated with geomodel-based predictions, the probability distribution/density of the subsurface reservoir needs to be accurately estimated as an explicit, intractable quantity for purposes of rapidly generating all possible variability and heterogeneity of the subsurface reservoir. In this paper, we developed and deployed advanced autoencoder-based deep-neural-network architectures for extracting the extremely low-dimensional representations of field geomodels. To that end, the compression and reconstruction efficiencies of vector-quantized variational autoencoders (VQ-VAE) were tested, compared and benchmarked on the task of multi-attribute geomodel compression. Following that, a deep-learning generative model inspired by pixel recurrent network, referred as PixelSNAIL Autoregression, learns not only to estimate the probability density distribution of the low-dimensional representations of large geomodels, but also to make up new latent space samples from the learned prior distributions. To better preserve and reproduce fluvial channels of geomodels, perceptual loss is introduced into the VQ-VAE model as the loss function. The best performing VQ-VAE achieved an excellent reconstruction from the low-dimensional representations, which exhibited structural similarity index measure (SSIM) of 0.87 at a compression ratio of 155. A hierarchical VQ-VAE model achieved extremely high compression ratio of 667 with SSIM of 0.92, which was further extended to a compression ratio of 1250 with SSIM of 0.85. Finally, using the PixelSNAIL based autoregressive recurrent neural network, we were able to rapidly generate thousands of large-scale geomodel realizations to quantify geological uncertainties to help further decision making. Meanwhile, unconditional generation demonstrated very high data augmentation capability to produce new coherent and realistic geomodels with given training dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
jie完成签到,获得积分20
刚刚
1秒前
mia完成签到,获得积分10
1秒前
精神四射发布了新的文献求助30
2秒前
冷静靖荷应助苗条的大树采纳,获得10
4秒前
unowhoiam完成签到 ,获得积分10
5秒前
5秒前
Kannan发布了新的文献求助10
6秒前
Amanda完成签到,获得积分10
8秒前
科研通AI5应助俏皮的曼安采纳,获得10
10秒前
浪麻麻完成签到 ,获得积分10
11秒前
11秒前
丘比特应助留胡子的之云采纳,获得10
11秒前
11秒前
11秒前
打工人一枚完成签到,获得积分10
11秒前
jar7989完成签到,获得积分10
11秒前
科研通AI5应助Capacition6采纳,获得10
13秒前
司忆完成签到 ,获得积分10
14秒前
14秒前
15秒前
Dejohn完成签到,获得积分10
15秒前
amnesiamber完成签到 ,获得积分10
16秒前
爱与诚发布了新的文献求助30
16秒前
17秒前
linley发布了新的文献求助10
17秒前
18秒前
yiyi131发布了新的文献求助10
20秒前
科研通AI5应助Capacition6采纳,获得10
23秒前
23秒前
23秒前
24秒前
科研通AI5应助湛刘佳采纳,获得10
28秒前
云宝发布了新的文献求助10
30秒前
李麟发布了新的文献求助10
30秒前
30秒前
低空飞行发布了新的文献求助20
31秒前
linley关注了科研通微信公众号
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589247
求助须知:如何正确求助?哪些是违规求助? 3157571
关于积分的说明 9516003
捐赠科研通 2860423
什么是DOI,文献DOI怎么找? 1571808
邀请新用户注册赠送积分活动 737505
科研通“疑难数据库(出版商)”最低求助积分说明 722293