DPMGCDA: Deciphering circRNA–Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder

自编码 图形 计算机科学 人工智能 药物重新定位 理论计算机科学 机器学习 药品 深度学习 医学 精神科
作者
Yue Luo,Lei Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4359-4372 被引量:4
标识
DOI:10.1021/acs.jcim.4c00573
摘要

Accumulating evidence has indicated that the expression of circular RNAs (circRNAs) can affect the cellular sensitivity to drugs and significantly influence drug efficacy. However, traditional experimental approaches for validating these associations are resource-intensive and time-consuming. To address this challenge, we propose a computational framework termed DPMGCDA leveraging dual perspective learning and path-masked graph autoencoder to predict circRNA-drug sensitivity associations. Initially, we construct circRNA-circRNA fusion similarity networks and drug-drug fusion similarity networks using similarity network fusion, ensuring a comprehensive integration of information. Based on the above, we built the circRNA homogeneous graph, the drug homogeneous graph, and the circRNA-drug heterogeneous graph. Next, we form the initial node features in the circRNA-drug heterogeneous graph from the homogeneous graph-level perspective and the combined feature-level perspective and complete the prediction of potential associations using the path-masked graph autoencoder in both perspectives. The predictions under both perspectives are finally combined to obtain the final prediction score. Transductive setting experiments and inductive setting experiments all demonstrate that our method, DPMGCDA, outperforms state-of-the-art approaches. Additionally, we verify the necessity of employing dual perspective learning through ablation tests and analyze the effective encoding capability of the path-masked graph autoencoder for features through embedding visualization. Moreover, case studies on four drugs corroborate DPMGCDA's ability to identify potential circRNAs associated with new drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15966014069发布了新的文献求助10
刚刚
lzn发布了新的文献求助30
1秒前
慕新完成签到,获得积分10
5秒前
5秒前
馆长举报研友_8KAzAn求助涉嫌违规
5秒前
幽默发卡完成签到,获得积分10
5秒前
zhangyulong完成签到,获得积分10
6秒前
Lucas应助JiaoJiao采纳,获得10
7秒前
sjj完成签到,获得积分10
8秒前
8秒前
bensonyang1013完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
沉默是金发布了新的文献求助10
11秒前
12秒前
Owen应助uromaster采纳,获得10
13秒前
凶狠的书白完成签到,获得积分10
14秒前
Ava应助云起龙都采纳,获得10
15秒前
16秒前
香蕉觅云应助Throb采纳,获得10
18秒前
linhappy完成签到,获得积分20
18秒前
帅气溪流完成签到,获得积分20
19秒前
唐泽雪穗发布了新的文献求助30
22秒前
蓝天应助李拾舟采纳,获得10
22秒前
23秒前
linhappy发布了新的文献求助10
23秒前
Night完成签到,获得积分10
24秒前
不想干活应助bnvgx采纳,获得10
24秒前
潇涯完成签到,获得积分10
25秒前
25秒前
27秒前
28秒前
ddddyyyyy完成签到,获得积分20
30秒前
30秒前
30秒前
31秒前
31秒前
yy完成签到,获得积分10
33秒前
lele发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537931
求助须知:如何正确求助?哪些是违规求助? 3972654
关于积分的说明 12306475
捐赠科研通 3639434
什么是DOI,文献DOI怎么找? 2003881
邀请新用户注册赠送积分活动 1039207
科研通“疑难数据库(出版商)”最低求助积分说明 928594