Cross-domain bearing fault diagnosis using dual-path convolutional neural networks and multi-parallel graph convolutional networks

计算机科学 卷积神经网络 人工智能 邻接表 模式识别(心理学) 特征(语言学) 路径(计算) 断层(地质) 图形 域适应 核(代数) 领域(数学分析) 数据挖掘 机器学习 算法 理论计算机科学 分类器(UML) 数学 地震学 地质学 数学分析 哲学 语言学 组合数学 程序设计语言
作者
Zhang Yong,Songzhao Zhang,Yuhao Zhu,Wenlong Ke
出处
期刊:Isa Transactions [Elsevier]
卷期号:152: 129-142 被引量:2
标识
DOI:10.1016/j.isatra.2024.06.009
摘要

Bearing fault diagnosis is significant in ensuring large machinery and equipment's safe and stable operation. However, inconsistent operating environments can lead to data distribution differences between source and target domains. As a result, models trained solely on source-domain data may not perform well when applied to the target domain, especially when the target-domain data is unlabeled. Existing approaches focus on improving domain adaptive methods for effective transfer learning but neglect the importance of extracting comprehensive feature information. To tackle this challenge, we present a bearing fault diagnosis approach using dual-path convolutional neural networks (CNNs) and multi-parallel graph convolutional networks (GCNs), called DPC-MGCN, which can be applied to variable working conditions. To obtain complete feature information, DPC-MGCN leverages dual-path CNNs to extract local and global features from vibration signals in both the source and target domains. The attention mechanism is subsequently applied to identify crucial features, which are converted into adjacency matrices. Multi-parallel GCNs are then employed to further explore the structural information among these features. To minimize the distribution differences between the two domains, we incorporate the multi-kernel maximum mean discrepancy (MK-MMD) domain adaptation method. By applying the DPC-MGCN approach for diagnosing bearing faults under diverse working conditions and comparing it with other methods, we demonstrate its superior performance on various datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美有姬完成签到,获得积分10
1秒前
万能图书馆应助何博士采纳,获得10
1秒前
科研通AI2S应助蘑菇采纳,获得10
1秒前
一平发布了新的文献求助10
2秒前
王一博完成签到,获得积分10
2秒前
3秒前
nihil完成签到,获得积分10
3秒前
活力的泥猴桃完成签到 ,获得积分10
4秒前
4秒前
5秒前
obito完成签到,获得积分10
5秒前
娜行发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
Ck完成签到,获得积分10
7秒前
烦烦完成签到 ,获得积分10
8秒前
百宝发布了新的文献求助10
9秒前
jiangnan发布了新的文献求助10
9秒前
Sev完成签到,获得积分10
9秒前
9秒前
可耐的乘风完成签到,获得积分10
9秒前
FIN应助obito采纳,获得30
10秒前
啾啾发布了新的文献求助10
10秒前
爱学习的向日葵完成签到,获得积分10
11秒前
11秒前
华仔应助泛泛之交采纳,获得10
12秒前
雪123发布了新的文献求助10
12秒前
12秒前
13秒前
charon发布了新的文献求助10
13秒前
凶狠的食铁兽完成签到,获得积分10
13秒前
星辰大海应助花花啊采纳,获得10
13秒前
华仔应助liuyingke采纳,获得10
13秒前
HEIKU应助还不如瞎写采纳,获得10
14秒前
liuliumei发布了新的文献求助30
15秒前
zhouzhou完成签到,获得积分10
15秒前
sure发布了新的文献求助10
15秒前
上官若男应助Hu111采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672