Decoding Sleep: Microphone-Based Snoring Analysis using Embedded Machine Learning for Obstructive Sleep Apnea Detection

阻塞性睡眠呼吸暂停 睡眠(系统调用) 解码方法 计算机科学 话筒 睡眠呼吸暂停 语音识别 听力学 医学 人工智能 内科学 电信 操作系统 声压
作者
Delpha Jacob,Priyanka Kokil,Sangeetha Subramanian,Jayanthi Thiruvengadam
标识
DOI:10.1109/icbsii61384.2024.10564033
摘要

Snoring, a recurring habit often disregarded within the Indian community, can signal a grave underlying issue of Obstructive Sleep Apnea (OSA). OSA is a severe sleep disorder characterized by recurrent interruptions in breathing for more than 10 seconds during sleep, typically due to partial or complete airway obstructions. Neglecting OSA can lead to a range of significant health risks, including increased likelihood of occupational accidents, motor vehicle accidents, heightened susceptibility to severe depression, cardiac and cerebrovascular diseases, and reduced life expectancy. The main objective of the study is to detect snoring while at sleep and also to classify it as normal snoring and OSA snoring. Arduino nano 33 BLE sense is used to capture the snore signal, it houses a built-in MP34DT05 sensor. The sensor has a signal-to-noise ratio of 64dB and sensitivity of - 26dBFS ± 3dB. This captures the sound signal of the individual, it is further processed to extract the Mel-filter bank energy features, Mel Frequency Cepstral Coefficients and Spectrogram features. The features are further used to build a model and the same is trained using edge impulse to classify the signal. The dataset is divided into training, testing, and validation sets, with 80% of the data allocated to training, 20% to testing, and an additional 20% within the training data set aside for validation purposes. The results for the two class classification (snoring and non snoring) indicate that the spectrogram-based approach achieved an accuracy rate of 96.9%, while the other two methods yielded accuracy rates of 93.8%. The accuracy for three class classification (normal, snoring and OSA snoring) using the Embedded Machine Learning (EML) approach is 88%. The proposed study demonstrates enhanced accuracy in identifying OSA by snoring compared to previous research. This autonomous system can facilitate the detection of OSA through the analysis of snoring patterns, subsequently alerting the subject to implement pre-emptive measures for remediation. Timely intervention and rectification can enable the subject to attain an undisturbed and restful night's sleep, thereby augmenting their overall quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助岳勇震采纳,获得10
刚刚
刚刚
星辰大海应助你好文献采纳,获得10
刚刚
orixero应助Bert采纳,获得10
刚刚
hsss发布了新的文献求助10
刚刚
刚刚
畅快若剑完成签到,获得积分10
刚刚
lzy完成签到,获得积分10
1秒前
lin发布了新的文献求助10
1秒前
浅念发布了新的文献求助10
1秒前
1秒前
1秒前
曹小妍发布了新的文献求助10
1秒前
阿颦完成签到,获得积分10
2秒前
绵羊不爱学习完成签到,获得积分10
2秒前
传奇3应助东方三问采纳,获得10
2秒前
科研通AI6应助鲨鱼采纳,获得10
2秒前
fsw完成签到 ,获得积分10
2秒前
2秒前
3秒前
思源应助牧楊人采纳,获得10
3秒前
Steve完成签到,获得积分10
4秒前
roro熊发布了新的文献求助10
4秒前
四叶草完成签到 ,获得积分10
4秒前
4秒前
顺利的雪莲完成签到 ,获得积分10
5秒前
5秒前
jkm发布了新的文献求助10
5秒前
机灵若风完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
Eternal芾夏完成签到,获得积分10
7秒前
666完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
RicardoYe完成签到,获得积分10
8秒前
jiojio完成签到,获得积分20
9秒前
科研王发布了新的文献求助10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572