Decoding Sleep: Microphone-Based Snoring Analysis using Embedded Machine Learning for Obstructive Sleep Apnea Detection

阻塞性睡眠呼吸暂停 睡眠(系统调用) 解码方法 计算机科学 话筒 睡眠呼吸暂停 语音识别 听力学 医学 人工智能 内科学 电信 操作系统 声压
作者
Delpha Jacob,Priyanka Kokil,Sangeetha Subramanian,Jayanthi Thiruvengadam
标识
DOI:10.1109/icbsii61384.2024.10564033
摘要

Snoring, a recurring habit often disregarded within the Indian community, can signal a grave underlying issue of Obstructive Sleep Apnea (OSA). OSA is a severe sleep disorder characterized by recurrent interruptions in breathing for more than 10 seconds during sleep, typically due to partial or complete airway obstructions. Neglecting OSA can lead to a range of significant health risks, including increased likelihood of occupational accidents, motor vehicle accidents, heightened susceptibility to severe depression, cardiac and cerebrovascular diseases, and reduced life expectancy. The main objective of the study is to detect snoring while at sleep and also to classify it as normal snoring and OSA snoring. Arduino nano 33 BLE sense is used to capture the snore signal, it houses a built-in MP34DT05 sensor. The sensor has a signal-to-noise ratio of 64dB and sensitivity of - 26dBFS ± 3dB. This captures the sound signal of the individual, it is further processed to extract the Mel-filter bank energy features, Mel Frequency Cepstral Coefficients and Spectrogram features. The features are further used to build a model and the same is trained using edge impulse to classify the signal. The dataset is divided into training, testing, and validation sets, with 80% of the data allocated to training, 20% to testing, and an additional 20% within the training data set aside for validation purposes. The results for the two class classification (snoring and non snoring) indicate that the spectrogram-based approach achieved an accuracy rate of 96.9%, while the other two methods yielded accuracy rates of 93.8%. The accuracy for three class classification (normal, snoring and OSA snoring) using the Embedded Machine Learning (EML) approach is 88%. The proposed study demonstrates enhanced accuracy in identifying OSA by snoring compared to previous research. This autonomous system can facilitate the detection of OSA through the analysis of snoring patterns, subsequently alerting the subject to implement pre-emptive measures for remediation. Timely intervention and rectification can enable the subject to attain an undisturbed and restful night's sleep, thereby augmenting their overall quality of life.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关我屁事完成签到 ,获得积分10
1秒前
金宁完成签到,获得积分10
3秒前
miaomliu完成签到,获得积分10
6秒前
乐乐应助裘山彤采纳,获得10
10秒前
喻槿发布了新的文献求助10
11秒前
22秒前
22秒前
喻槿完成签到,获得积分10
27秒前
qiao发布了新的文献求助10
27秒前
英俊的铭应助喻槿采纳,获得10
32秒前
隐形曼青应助lcr采纳,获得10
33秒前
34秒前
36秒前
36秒前
36秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
在水一方应助科研通管家采纳,获得10
37秒前
英俊的铭应助科研通管家采纳,获得10
38秒前
38秒前
kiki完成签到,获得积分10
39秒前
魏头头发布了新的文献求助10
40秒前
辣目童子完成签到 ,获得积分10
43秒前
44秒前
Lucycomplex完成签到,获得积分10
46秒前
程昱发布了新的文献求助10
51秒前
韦雪莲完成签到 ,获得积分10
54秒前
魏头头完成签到 ,获得积分10
54秒前
katata完成签到 ,获得积分10
56秒前
小新完成签到 ,获得积分10
1分钟前
传奇3应助xdc采纳,获得10
1分钟前
务实笑柳完成签到 ,获得积分10
1分钟前
孙嘉畯完成签到 ,获得积分10
1分钟前
1分钟前
如意的冰双完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506