亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decoding Sleep: Microphone-Based Snoring Analysis using Embedded Machine Learning for Obstructive Sleep Apnea Detection

阻塞性睡眠呼吸暂停 睡眠(系统调用) 解码方法 计算机科学 话筒 睡眠呼吸暂停 语音识别 听力学 医学 人工智能 内科学 电信 操作系统 声压
作者
Delpha Jacob,Priyanka Kokil,Sangeetha Subramanian,Jayanthi Thiruvengadam
标识
DOI:10.1109/icbsii61384.2024.10564033
摘要

Snoring, a recurring habit often disregarded within the Indian community, can signal a grave underlying issue of Obstructive Sleep Apnea (OSA). OSA is a severe sleep disorder characterized by recurrent interruptions in breathing for more than 10 seconds during sleep, typically due to partial or complete airway obstructions. Neglecting OSA can lead to a range of significant health risks, including increased likelihood of occupational accidents, motor vehicle accidents, heightened susceptibility to severe depression, cardiac and cerebrovascular diseases, and reduced life expectancy. The main objective of the study is to detect snoring while at sleep and also to classify it as normal snoring and OSA snoring. Arduino nano 33 BLE sense is used to capture the snore signal, it houses a built-in MP34DT05 sensor. The sensor has a signal-to-noise ratio of 64dB and sensitivity of - 26dBFS ± 3dB. This captures the sound signal of the individual, it is further processed to extract the Mel-filter bank energy features, Mel Frequency Cepstral Coefficients and Spectrogram features. The features are further used to build a model and the same is trained using edge impulse to classify the signal. The dataset is divided into training, testing, and validation sets, with 80% of the data allocated to training, 20% to testing, and an additional 20% within the training data set aside for validation purposes. The results for the two class classification (snoring and non snoring) indicate that the spectrogram-based approach achieved an accuracy rate of 96.9%, while the other two methods yielded accuracy rates of 93.8%. The accuracy for three class classification (normal, snoring and OSA snoring) using the Embedded Machine Learning (EML) approach is 88%. The proposed study demonstrates enhanced accuracy in identifying OSA by snoring compared to previous research. This autonomous system can facilitate the detection of OSA through the analysis of snoring patterns, subsequently alerting the subject to implement pre-emptive measures for remediation. Timely intervention and rectification can enable the subject to attain an undisturbed and restful night's sleep, thereby augmenting their overall quality of life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
简单的凡儿完成签到,获得积分10
10秒前
BowieHuang应助科研通管家采纳,获得10
43秒前
47秒前
54秒前
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
拼搏姒发布了新的文献求助10
1分钟前
Henvy完成签到,获得积分10
1分钟前
江瑟瑟完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
WerWu完成签到,获得积分0
2分钟前
芽衣完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
hll发布了新的文献求助50
3分钟前
hll完成签到,获得积分10
3分钟前
shhoing应助hu采纳,获得10
3分钟前
盛事不朽完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
玛琳卡迪马完成签到,获得积分10
4分钟前
Chi_bio完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
knight7m完成签到 ,获得积分10
5分钟前
卓天宇完成签到,获得积分0
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
7分钟前
畅快的白枫完成签到 ,获得积分20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582525
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500225
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938