Decoding Sleep: Microphone-Based Snoring Analysis using Embedded Machine Learning for Obstructive Sleep Apnea Detection

阻塞性睡眠呼吸暂停 睡眠(系统调用) 解码方法 计算机科学 话筒 睡眠呼吸暂停 语音识别 听力学 医学 人工智能 内科学 电信 操作系统 声压
作者
Delpha Jacob,Priyanka Kokil,Sangeetha Subramanian,Jayanthi Thiruvengadam
标识
DOI:10.1109/icbsii61384.2024.10564033
摘要

Snoring, a recurring habit often disregarded within the Indian community, can signal a grave underlying issue of Obstructive Sleep Apnea (OSA). OSA is a severe sleep disorder characterized by recurrent interruptions in breathing for more than 10 seconds during sleep, typically due to partial or complete airway obstructions. Neglecting OSA can lead to a range of significant health risks, including increased likelihood of occupational accidents, motor vehicle accidents, heightened susceptibility to severe depression, cardiac and cerebrovascular diseases, and reduced life expectancy. The main objective of the study is to detect snoring while at sleep and also to classify it as normal snoring and OSA snoring. Arduino nano 33 BLE sense is used to capture the snore signal, it houses a built-in MP34DT05 sensor. The sensor has a signal-to-noise ratio of 64dB and sensitivity of - 26dBFS ± 3dB. This captures the sound signal of the individual, it is further processed to extract the Mel-filter bank energy features, Mel Frequency Cepstral Coefficients and Spectrogram features. The features are further used to build a model and the same is trained using edge impulse to classify the signal. The dataset is divided into training, testing, and validation sets, with 80% of the data allocated to training, 20% to testing, and an additional 20% within the training data set aside for validation purposes. The results for the two class classification (snoring and non snoring) indicate that the spectrogram-based approach achieved an accuracy rate of 96.9%, while the other two methods yielded accuracy rates of 93.8%. The accuracy for three class classification (normal, snoring and OSA snoring) using the Embedded Machine Learning (EML) approach is 88%. The proposed study demonstrates enhanced accuracy in identifying OSA by snoring compared to previous research. This autonomous system can facilitate the detection of OSA through the analysis of snoring patterns, subsequently alerting the subject to implement pre-emptive measures for remediation. Timely intervention and rectification can enable the subject to attain an undisturbed and restful night's sleep, thereby augmenting their overall quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追风少年完成签到 ,获得积分10
6秒前
自然的含蕾完成签到 ,获得积分10
7秒前
迅速千愁完成签到 ,获得积分10
8秒前
Hina完成签到,获得积分10
10秒前
BaekHyun完成签到 ,获得积分10
11秒前
nuliguan完成签到 ,获得积分10
17秒前
jie完成签到 ,获得积分10
23秒前
握瑾怀瑜完成签到 ,获得积分0
30秒前
小杨完成签到,获得积分10
34秒前
炎炎夏无声完成签到 ,获得积分10
52秒前
林余玄完成签到 ,获得积分10
1分钟前
ybheart完成签到,获得积分10
1分钟前
研友_8y2G0L完成签到,获得积分10
1分钟前
海绵宝宝前列腺儿完成签到,获得积分10
1分钟前
knn完成签到 ,获得积分10
1分钟前
吃的饱饱呀完成签到 ,获得积分10
1分钟前
南风完成签到 ,获得积分10
1分钟前
满天星的光完成签到,获得积分10
1分钟前
加油少年完成签到,获得积分10
1分钟前
很久很久发布了新的文献求助10
1分钟前
沉默的小耳朵完成签到 ,获得积分10
1分钟前
阿俊1212发布了新的文献求助10
1分钟前
logolush完成签到 ,获得积分10
1分钟前
很久很久完成签到,获得积分10
2分钟前
缥缈映安完成签到,获得积分10
2分钟前
张振宇完成签到 ,获得积分10
2分钟前
mzrrong完成签到 ,获得积分10
2分钟前
很久很久发布了新的文献求助10
2分钟前
聪慧语山完成签到 ,获得积分10
2分钟前
小马甲应助阿俊1212采纳,获得10
2分钟前
雨声完成签到,获得积分10
2分钟前
2分钟前
i2stay完成签到,获得积分10
2分钟前
无极2023完成签到 ,获得积分10
2分钟前
清脆安南完成签到 ,获得积分10
2分钟前
喜悦香萱完成签到 ,获得积分10
3分钟前
我就想看看文献完成签到 ,获得积分10
3分钟前
Tina完成签到 ,获得积分10
3分钟前
小菜完成签到,获得积分10
3分钟前
btcat完成签到,获得积分10
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139630
求助须知:如何正确求助?哪些是违规求助? 2790514
关于积分的说明 7795514
捐赠科研通 2446980
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176