Decoding Sleep: Microphone-Based Snoring Analysis using Embedded Machine Learning for Obstructive Sleep Apnea Detection

阻塞性睡眠呼吸暂停 睡眠(系统调用) 解码方法 计算机科学 话筒 睡眠呼吸暂停 语音识别 听力学 医学 人工智能 内科学 电信 操作系统 声压
作者
Delpha Jacob,Priyanka Kokil,Sangeetha Subramanian,Jayanthi Thiruvengadam
标识
DOI:10.1109/icbsii61384.2024.10564033
摘要

Snoring, a recurring habit often disregarded within the Indian community, can signal a grave underlying issue of Obstructive Sleep Apnea (OSA). OSA is a severe sleep disorder characterized by recurrent interruptions in breathing for more than 10 seconds during sleep, typically due to partial or complete airway obstructions. Neglecting OSA can lead to a range of significant health risks, including increased likelihood of occupational accidents, motor vehicle accidents, heightened susceptibility to severe depression, cardiac and cerebrovascular diseases, and reduced life expectancy. The main objective of the study is to detect snoring while at sleep and also to classify it as normal snoring and OSA snoring. Arduino nano 33 BLE sense is used to capture the snore signal, it houses a built-in MP34DT05 sensor. The sensor has a signal-to-noise ratio of 64dB and sensitivity of - 26dBFS ± 3dB. This captures the sound signal of the individual, it is further processed to extract the Mel-filter bank energy features, Mel Frequency Cepstral Coefficients and Spectrogram features. The features are further used to build a model and the same is trained using edge impulse to classify the signal. The dataset is divided into training, testing, and validation sets, with 80% of the data allocated to training, 20% to testing, and an additional 20% within the training data set aside for validation purposes. The results for the two class classification (snoring and non snoring) indicate that the spectrogram-based approach achieved an accuracy rate of 96.9%, while the other two methods yielded accuracy rates of 93.8%. The accuracy for three class classification (normal, snoring and OSA snoring) using the Embedded Machine Learning (EML) approach is 88%. The proposed study demonstrates enhanced accuracy in identifying OSA by snoring compared to previous research. This autonomous system can facilitate the detection of OSA through the analysis of snoring patterns, subsequently alerting the subject to implement pre-emptive measures for remediation. Timely intervention and rectification can enable the subject to attain an undisturbed and restful night's sleep, thereby augmenting their overall quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
galaxy008发布了新的文献求助10
1秒前
45发布了新的文献求助10
1秒前
1秒前
昏睡的蟠桃应助月下荷花采纳,获得50
1秒前
XXXp完成签到,获得积分10
1秒前
厉害tt发布了新的文献求助10
2秒前
3秒前
3秒前
汉堡包应助wodel采纳,获得10
3秒前
英吉利25发布了新的文献求助10
4秒前
香菜完成签到 ,获得积分10
4秒前
谨慎紫蓝完成签到 ,获得积分10
4秒前
5秒前
上官若男应助xinying采纳,获得10
5秒前
老迟到的金鱼应助王乾龙采纳,获得10
6秒前
情怀应助王乾龙采纳,获得10
6秒前
枣核儿完成签到,获得积分10
6秒前
哈哈哈哈哈关注了科研通微信公众号
6秒前
在水一方应助优美的海秋采纳,获得10
6秒前
hahahalha完成签到,获得积分10
7秒前
养乐多完成签到,获得积分10
7秒前
大个应助lzy采纳,获得10
7秒前
羽寞发布了新的文献求助20
8秒前
。。发布了新的文献求助10
8秒前
8秒前
科研通AI5应助qwerty采纳,获得10
8秒前
9秒前
读不完的文献啊完成签到,获得积分10
9秒前
李健的小迷弟应助万木采纳,获得10
9秒前
9秒前
ANHYPNIA发布了新的文献求助10
10秒前
慕青应助慢慢采纳,获得30
10秒前
欢喜的毛豆完成签到,获得积分10
10秒前
11秒前
高兴吐司完成签到,获得积分10
12秒前
明理鱼完成签到,获得积分10
12秒前
12秒前
Jasper应助小朱朱采纳,获得10
13秒前
Owen应助我爱看文献采纳,获得10
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059